Nächste Seite: Clipping bezüglich des Sichtvolumens
Aufwärts: 3-dimensionale Darstellung
Vorherige Seite: Klassifizierung der Projektionen
  Inhalt
Unterabschnitte
Für eine Implementierung der Projektion und der Clipping-Operationen
(auch bei obiger Parallelprojektion) ist es zweckmäßig, den
sichtbaren Bereich der Szene als ein kanonisches Sichtvolumen zu
repräsentieren,
d.h.
- der Kamerapunkt (bzw. die Kamerarichtung bei der Parallelprojektion)
bestimmt mit den Rändern des Ausschnitts der Bildebene, der auf
dem Ausgabegerät dargestellt werden soll, die seitlichen
Begrenzungsebenen des Sichtvolumens;
- man spezifiziert weiterhin eine vordere und eine hintere
Begrenzungsebene (z.B. durch Angabe zweier Distanzen und
front und back, oder near und far),
um das Sichtvolumen vollständig abzuschließen; hierzu verwendet
man entweder
- die durch die Szene vorgegebenen, maximalen Koordinaten bezüglich
des Abstandes von der Bildebene,
- oder die durch den Benutzer angegebenen, maximalen Koordinaten des
Teils der Szene, welcher sichtbar sein soll (so will man z.B. häufig,
dass die Objekte zwischen Kamerapunkt und Bildebene nicht auf die
Bildebene projiziert werden).
- das endliche Sichtvolumen wird durch eine lineare Transformation
in ein kanonisches Sichtvolumen (z.B. Einheitswürfel, oder
Einheitspyramide mit Grundfläche 2 auf 2 und Höhe 1)
transformiert, so dass anschließende
Clipping- und Sichtbarkeitsberechnungen einfacher zu berechnen sind.
Berechnung eines kanonischen Sichtvolumens für die
Parallelprojektion
wobei
den Ursprung in den Kamerapunkt verschiebt,
die Weltkoordinaten in Kamerakoordinaten transformiert,
durch eine Scherung die schiefwinklige Projektion in eine
orthogonale umwandelt,
den Ursprung in eine Ecke des Quaders verschiebt,
den Quader zum Einheitswürfel skaliert.
Berechnung eines kanonischen Sichtvolumens für die
Zentralprojektion
Betrachten wir folgenden etwas vereinfachten Fall, d.h. der
Fokuspunkt der Projektion liegt auf der -Achse
des Kamerakoordinatensystems:
wobei
den Ursprung in den Fokuspunkt verschiebt (stimmt die Kameraposition
mit dem Fokuspunkt überein, was wohl der in der Praxis verwendete
Fall ist, dann braucht nicht verschoben zu werden, d.h. )
mit
durch eine Scherung die Mittellinie des Sichtvolumens in die -Achse
(-Achse) transformiert,
durch eine -Skalierung die seitlichen Begrenzungsebenen zu
-Ebenen neigt,
die Pyramide zur Einheitspyramide skaliert.
Diese Pyramide kann auch in den Einheitswürfel transformiert werden.
Tun Sie dies!
Nächste Seite: Clipping bezüglich des Sichtvolumens
Aufwärts: 3-dimensionale Darstellung
Vorherige Seite: Klassifizierung der Projektionen
  Inhalt
© 2004/2005, A. Formella & D. Fellner, Universität Braunschweig