### Intelligent and Adaptable Software Systems

Advanced Algorithms: Optimization and Search Methods

Dr. Arno Formella

Computer Science Department University of Vigo

14/15



• Homepage:

http://formella.webs.uvigo.es/doc/ssia14

- whiteboard (illustrations, notations, ideas for proofs, algorithms etc.)
- very short introduction to certain aspects related to optimization and search methods, and some applications



### Course organization

class room hours (preliminary)

Optimization and Search Methods initially, fridays, 16:00–18:00, but ...



## Course organization

class room hours

 Dr. Arno Formella office hours: tuesdays, 09:30-13:30 and 17-19



## **Bibliography**

books

 OUR 519.8.15, OUR 519.8/23, OUR 519.8/24, OUR 519.8/46, OUR 519/17, OUR 519/20



- browse through the web pages provided in the following slides
- sort the information provided into the categories of optimization methods as mentioned below
- find a web service that allows you to compute the derivation of a function
- use the NEOS-server to find the minimum of the function

$$f(x) = a(x-b)^2 + c + d\cos(e(x-f) + g)$$

for some (different) values of the parameters (maybe you start with d=e=f=g=0).



### Your work

#### more extensive research task I

- of form a group with at most one other student
- select in accordance with Prof. Arno Formella one of the proposed algorithms on the next slide
- elaborate a not too short and not too long article (6 to 10 pages) about the algorithm, including at least the aspects stated on the next but one slide.



#### Your work

more extensive research task II, examples

- Nelder Mead algorithm
- Newton Raphson
- Rodríquez García-Palomares algorithm
- Levenberg Marquardt algorithm
- great deluge algorithm
- local unimodel sampling



### Your work

#### more extensive research task III

your article should treat the following issues

- description of the algorithm
- main field of application
- advantages and disadvantages compared to other algorithms
- available software/implementations
- critical discussion of their APIs
- references on the algorithm and its applications



#### (working in september 2012)

- http://www.neos-server.org online optimization project
- http://www.coin-or.org/index.html pperation research
- http://www.cs.sandia.gov/opt/survey global optimization
- http:
  //www.mat.univie.ac.at/~neum/glopt.html
  global optimization



10 / 20

- http://www.stanford.edu/~boyd/index.html
   Stephen P. Boyd, Stanford
- http://iridia.ulb.ac.be/~mdorigo/ACO/ ant colony optimization
- http://plato.asu.edu/gom.html continuous global optimization software
- http://www.swarmintelligence.org/index.php particle swarm optimization
- Rui Mendes. Population topologies and their influence in particle swarm performance. PhD Thesis, Universidad de Minho, 2004. http://www.di.uminho.pt/~rcm/



#### Optimizing means

- search for (at least) one solution
- which is different from other possible solutions
- in the sense of being (sufficiently) extreme
- within an ordering
- possibly taking into account certain restrictions
- (within a certain limit of computing time).

Example: hiking in a mountain ridge (with fog).



#### Problems which one wants to solve:

- minimizing cost
- maximizing earnings
- maximizing occupation
- minimizing energy
- minimizing resources



observations

the search space and/or the objective function can be

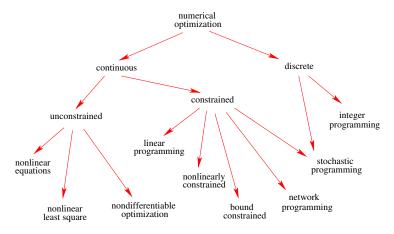
- discrete or continous
- total or partial
- simple or complex, especially in respect to evaluation time
- explicite, implicite, experimental
- linear or non-linear
- convex or non-convex
- differentiable or non-differentiable
- constrained or unconstrained
- static or dynamic

The objective function must be confined.



objective functions

- Minimization
- Maximization
- Obviously any maximization problem can be converted to a minimization problem.




conditions

- restrictions
- feasable solution (feasibility problem)
- coding of the solutions



#### (after NEOS server (almost), Argonne National Laboratory)



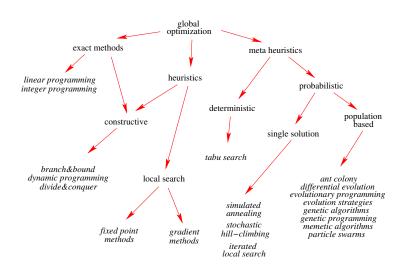


types

to be distinguished

local optimization: usually one starts from an initial solution and stops when having found a local (close) minimum

global optimization: one tries to find the best solution globally (among all possible solutions)




problems

• The main problem of global optimization is: getting trapped in a local minimum (premature convergence)



global optimization (incomplete intent)



