Intelligent and Adaptable Software Systems

Advanced Algorithms: Optimization and Search Methods

Dr. Arno Formella

Computer Science Department University of Vigo

12/13

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella

1 / 195

Course organization

class room hours (preliminary)

Universida_{de}Vigo

Optimization and Search Methods fridays, 16:00-18:00

28.09.	05.10.	19.10.	26.10.	02.11.
		, , ,		
class	class	(no-class)	class	lab
09.11.	16.11.	23.11.	30.11.	07.12.
09.11.	10.11.	23.11.	30.11.	07.12.
clace	clace	clace	lah	lah
class	class	class	lab	lab
			10.0	
class 14.12.	class 21.12.	11.01.	lab 18.01.	lab 25.01.
			10.0	

SSIA-OSM

Dr. Arno Formella

Course organization

course notes

• Homepage:

http://trevinca.ei.uvigo.es/~formella/doc/ssia12

- whiteboard (illustrations, notations, ideas for proofs, algorithms etc.)
- very short introduction to certain aspects related to optimization and search methods, and some applications

L∏² Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 2 / 195

Course organization

class room hours

 Dr. Arno Formella office hours: tuesdays, 09:30-13:30 and 17-19

Bibliography

books

• OUR 519.8.15, OUR 519.8/23, OUR 519.8/24, OUR 519.8/46, OUR 519/17, OUR 519/20

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

5 / 195

Universida_{de}Vigo

SSIA-OSM

L∏²

Your work

more extensive research task I

- form a group with at most one other student
- 2 select in accordance with Prof. Arno Formella one of the proposed algorithms on the next slide
- elaborate a not too short and not too long article (6 to 10 pages) about the algorithm, including at least the aspects stated on the next but one slide.

Your work

homework, lab hours, presentations

- browse through the web pages provided in the following slides
- sort the information provided into the categories of optimization methods as mentioned below
- find a web service that allows you to compute the derivation of a function
- use the NEOS-server to find the minimum of the function

$$f(x) = a(x-b)^2 + c + d\cos(e(x-f) + g)$$

for some (different) values of the parameters (maybe you start with d = e = f = g = 0).

Dr. Arno Formella

Your work

more extensive research task II, examples

- Nelder Mead algorithm
- Newton Raphson
- Rodríguez García-Palomares algorithm
- Levenberg Marquardt algorithm
- great deluge algorithm
- local unimodel sampling

7 / 195

Your work

more extensive research task III

your article should treat the following issues

- description of the algorithm
- main field of application
- advantages and disadvantages compared to other algorithms
- available software/implementations
- critical discussion of their APIs
- references on the algorithm and its applications

L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

9 / 195

Bibliography II

links

- http://www.stanford.edu/~boyd/index.html Stephen P. Boyd, Stanford
- http://iridia.ulb.ac.be/~mdorigo/ACO/ ant colony optimization
- http://plato.asu.edu/gom.html continuous global optimization software
- http://www.swarmintelligence.org/index.php particle swarm optimization
- Rui Mendes. Population topologies and their influence in particle swarm performance. PhD Thesis, Universidad de Minho, 2004.

http://www.di.uminho.pt/~rcm/

Bibliography I

links

(working in september 2012)

- http://www.neos-server.org online optimization project
- http://www.coin-or.org/index.html pperation research
- http://www.cs.sandia.gov/opt/survey global optimization
- http: //www.mat.univie.ac.at/~neum/glopt.html global optimization

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

10 / 195

Motivation

what is it?

Optimizing means

- search for (at least) one solution
- which is different from other possible solutions
- in the sense of being (sufficiently) extreme
- within an ordering
- possibly taking into account certain restrictions

SSIA-OSM

(within a certain limit of computing time).

Example: hiking in a mountain ridge (with fog).

Motivation

examples

Problems which one wants to solve:

- minimizing cost
- maximizing earnings
- maximizing occupation
- minimizing energy
- minimizing resources

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

13 / 195

Basic concepts

objective functions

Universida_{de}Vigo

- Minimization
- Maximization
- Obviously any maximization problem can be converted to a minimization problem.

Basic concepts

observations

the search space and/or the objective function can be

- discrete or continous
- total or partial
- simple or complex, especially in respect to evaluation time
- explicite, implicite, experimental
- linear or non-linear
- convex or non-convex
- differentiable or non-differentiable
- constrained or unconstrained
- static or dynamic

The objective function must be confined.

L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

14 / 195

Basic concepts

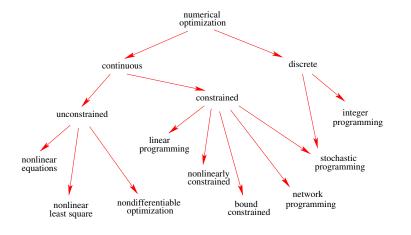
conditions

- restrictions
- feasable solution (feasibility problem)
- coding of the solutions

Basic concepts

classification

(after NEOS server (almost), Argonne National Laboratory)



L∏²

Universida_{de}Vigo 17 / 195 SSIA-OSM Dr. Arno Formella

Basic concepts

problems

• The main problem of global optimization is: getting trapped in a local minimum (premature convergence)

Basic concepts

to be distinguished

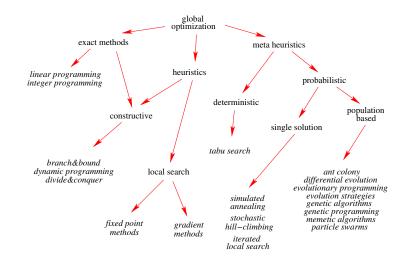
local optimization: usually one starts from an initial solution and stops when having found a local (close) minimum

global optimization: one tries to find the best solution globally (among all possible solutions)

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 18 / 195

Basic concepts

global optimization (incomplete intent)



Universida_{de}Vigo

SSIA-OSM

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

20 / 195

A real application

psm

approximate Point Set Match in 2D and 3D

An application where we need sophisticated search and optimization techniques.

Universida_d/Vigo SSIA-OSM Dr. Arno Formella 21 / 195

Motivation

psm

- searching of patterns
 (relatively small sets of two- or three-dimensional points),
 within search spaces
 (relatively large point sets)
- comparing point sets
- key words geometric pattern matching, structure comparison, point set matching, structural alignment, object recognition

Dónde está Wally?

U⊓²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

22 / 195

Joint work with

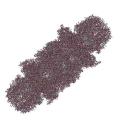
- Thorsten Pöschel
- some ideas from: Kristian Rother, Stefan Günther
- Humboldt Universität—Charité Berlin
 http://www.charite.de/bioinf/people.html
- psm is one of the algorithms available at http: //farnsworth.charite.de/superimpose-web

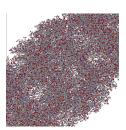
Search of a substructure in a protein

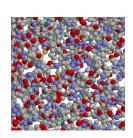
search space

Search of a substructure in a protein

search pattern







L∏²

Universida_{de}Vigo Dr. Arno Formella

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

L∏²

26 / 195

Dónde está Wally?

Informal problem description

- given a search space and
- a search pattern,
- find the location within the space which represents best the pattern

-Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 27 / 195 Universida_{de}Vigo SSIA-OSM Dr. Arno Formella

Extensions

- find the best part of the pattern which can be represented within the search space
- allow certain types of deformation of the pattern
- find similar parts within the same point set

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

29 / 195

Formal problem description

search space:

$$S = \{s_0, s_1, \dots, s_{n-1}\} \subset \mathbb{R}^d, \quad |S| = n$$

search pattern:

$$P = \{p_0, p_1, \dots, p_{k-1}\} \subset \mathbb{R}^d, \qquad |P| = k \le n$$

• dimension d=2 or d=3

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

L∏² 30 / 195

Search and alignment

- the aligning process can be separated in two parts
 - find the matching points in the pattern and the search space
 - find the necessary transformation to move the pattern to its location
- an approximate alignment must be qualified

Matching

- a matching is a function that assigns to each point of the search pattern a different point of the search space
- $\mu: P \longrightarrow S$ injective, i.e.,
- if $p_i \neq p_i$ then $\mu(p_i) \neq \mu(p_i)$
- let's write: $\mu(p_i) = s_i'$ and $\mu(P) = S'$

Transformations

- transformations which maintain distances: translation, rotation and reflection
- transformations which maintain angles: translation, rotation, reflection and scaling
- deforming transformations: shearing, projection, and others (local deformations)

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella

Alignment

- a matching μ together with a transformation T is an alignment (μ, T)
- rigid motion transformation: congruent alignment
- with scaling: similar alignment
- with reflection: L-alignment

Congruent and similar transformations

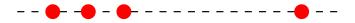
- rigid motion transformation (euclidean transformation or congruent transformation) only translation and rotation
- similar transformation rigid motion transformation with scaling
- we may allow reflections as well (L-matches)
- let T be a transformation (normally congruent)
- we transform the pattern
- let's write: $T(p_i) = p'_i$ and T(P) = P'

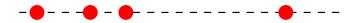
SSIA-OSM Dr. Arno Formella

34 / 195

Universida_{de}Vigo

One-dimensional example





Distance of an alignment

- let (μ, T) be an alignment of P in S
- we can measure the distances between transformed points of the pattern and their partners in the search space
- i.e., the distances

$$d_i = d(T(p_i), \mu(p_i)) = d(p'_i, s'_i)$$

• obviously, if $d_i = 0$ for all ithen the alignment is perfect

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

37 / 195

Quality of an alignment

Universida_{de}Vigo

- there are many interesting distance measures
- a distance d has its value in $[0, \infty]$
- we use the quality Q of an alignment Q = 1/(1+d)
- (other possibility: $Q = \exp(-d)$)
- hence: Q = 1 perfect alignment, $Q \in]0,1]$
- and: Q < 1 approximate alignment

Examples of different distances of an alignment

• root mean square distance (RMS)

$$d = \sqrt{\frac{1}{n} \sum_{i} (p'_i - s'_i)^2}$$

average distance (AVG)

$$d = \frac{1}{n} \sum_{i} |p'_i - s'_i|$$

maximum distance (MAX)

$$d = \max_{i} |p'_i - s'_i|$$

L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

38 / 195

Formal problem description

- given a search space S, and
- given a search pattern P
- given a distance measure
- find an alignment (μ, T) of P in Swith minimum distance d (or maximum quality Q)

Perfect congruent alignments

• congruent alignments in IR³ (Boxer 1999):

$$O(n^{2.5} \sqrt[4]{\log^* n} + \underbrace{kn^{1.8} (\log^* n)^{O(1)}}_{\text{output}} \log n)$$

- for small k the first term is dominant
- log* n is smallest I such that

$$2^{2^{\dots^2}}$$
 $\left. I - \text{veces} \ge n \quad \log^* n = 5 \implies n \approx 2^{65000} \right.$

SSIA-OSM

U⊓²

Universida_{de}Vigo

Dr. Arno Formella

41 / 195

Perfect alignments

ideas

- choose one triangle, e.g. (p_0, p_1, p_2) , of P
- search for all congruent triangles in S
 (and their corresponding transformations)
- verify the rest of the points of P
 (after having applied the transformation)
- the run time is not proportional to n^3 (in case of congruence) because we can enumerate the triangles of S in a sophisticated manner and there are not as many possibilities

Perfect similar alignments

• similar alignments in IR³ (Boxer 1999):

$$O(n^3 + \underbrace{kn^{2,2}}_{\text{output}} \log n)$$

 searching approximate alignments and/or partial alignments is a much more complex problem

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

42 / 195

Approximate alignments

- as stated, we work in two steps
 - we search for adequate matchings μ (according to a certain tolerance)
 - we calculate the optimal transformations T (according to a certain distance measure)

SSIA-OSM

• we select the best alignment(s)

43 / 195

- Universida_{de}Vigo

Dr. Arno Formella

Optimal Transformation

- let $S' = \mu(P)$ be a matching
- let *d* be a distance measure
- we look for the optimal rigid motion transformation T, (only translation and rotation), such that
- $d(T(P), \mu(P)) = d(P', S')$ is minimal

U⊓²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

45 / 195

A little bit of math

we observe: t and U are independent

• with the partial derivative of *d* according *t*

$$\frac{\partial d}{\partial t} = 2 \cdot \sum_{i} (U \cdot p_i + t - s'_i) = 2U \sum_{i} p_i + 2nt - 2 \sum_{i} s'_i$$

we obtain

$$t = -U\frac{1}{n}\sum_{i}p_{i} + \frac{1}{n}\sum_{i}s'_{i}$$
$$= -U \cdot p_{c} + s'_{c}$$

• where p_c and s'_c are the centroids of both sets

Root mean square distance

$$d = \sqrt{\frac{1}{n} \sum_{i} d(p'_i, s'_i)^2}$$
$$= \sqrt{\frac{1}{n} \sum_{i} (U \cdot p_i + t - s'_i)^2}$$

- U 3x3 rotation matrix, i.e., orthonormal
- t translation vector

Objective: find *U* and *t* such that *d* is minimal

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

46 / 195

Optimal Rotation

• with the above, d can be written as

$$d = \sqrt{\frac{1}{n} \sum_{i} (U \cdot p_{i} + t - s'_{i})^{2}}$$

$$= \sqrt{\frac{1}{n} \sum_{i} (U \cdot (p_{i} - p_{c}) - (s'_{i} - s'_{c}))^{2}}$$

• where *U* is a matrix with restrictions (has to be orthonormal)

SSIA-OSM

48 / 195

Universida_{de}Vigo

Extremal points of functions with restrictions

- one converts the problem with restrictions
- with the help of LAGRANGE multiplies into
- a problem without restrictions
- which exhibits the same extremal points

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

49 / 195

Universida_{de}Vigo

Dr. Arno Formella

50 / 195

L∏²

KABSCH algorithm

Universida_{de}Vigo

- let **S** be the matrix of rows containing the s'_i
- let **P** be the matrix of rows containing the p_i
- we compute $\mathbf{R} = \mathbf{S} \cdot \mathbf{P}^{\top}$
- we set $\mathbf{A} = [\mathbf{a_0} \ \mathbf{a_1} \ \mathbf{a_2}]$ with $\mathbf{a_k}$ being the eigenvectors of $\mathbf{R}^{\top} \mathbf{R}$
- we compute $\mathbf{B} = [\|\mathbf{R}\mathbf{a}_0\| \|\mathbf{R}\mathbf{a}_1\| \|\mathbf{R}\mathbf{a}_2\|]$
- and finally, we get $U = \mathbf{B} \cdot \mathbf{A}^{\top}$

Let's skip the details

- basically, we calculate first and second derivative according to the entries u_{ii} of U
- we search for the extremal points
- KABSCH algorithm 1976, 1978
- open source code at my home page

Introduction of scaling

ullet let us introduce a scaling value $\sigma\in {\rm I\!R}$

$$d = \sqrt{\frac{1}{n}\sum_{i}(\sigma U \cdot (p_i - p_c) - (s'_i - s'_c))^2}$$

- let $p_i'' = U \cdot (p_i p_c)$ be the translated and rotated point p_i
- let $s_i'' = s_i' s_c'$ be the centralized point s_i'
- $\bullet \ \ \text{the solution for the optimal } \sigma \text{:} \ \sigma = \frac{\displaystyle \sum_{i} \langle s_i'', p_i'' \rangle}{\displaystyle \sum_{i} \langle p_i'', p_i'' \rangle}$

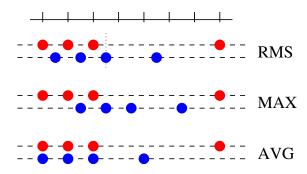
SSIA-OSM

SSIA-OSM Dr. Arno Formella 51 / 195

Universida_{de}Vigo

Dr. Arno Formella

Different distance measures—different alignments



L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

Universida_{de}Vigo

SSIA-OSM

54 / 195

Idea behind RODRIGUEZ/GARCIA-PALOMARES

- let $f(\mathbf{x})$ be the function to be minimized
- we iterate contracting and expanding adequately parameters $h^k > 0$ and $\tau > 0$ such that
- $f(\mathbf{x}_{i+1}) = f(\mathbf{x}_i \pm h^k \mathbf{d}_k) \le f(\mathbf{x}_i) \tau^2$
- where \mathbf{d}_k is a direction taken from a finite set of directions (which depends on the point \mathbf{x}_i)
- with $\tau \longrightarrow 0$, \mathbf{x}_i converges to local optimum (while there are no constraints)

Optimal transformations for non-derivable distance measures

- if the function for d is not derivable, e.g., the average
- we use a gradient free optimization method (only with evaluations of the function)
- recently developed iterative method that is guaranteed to converge towards a local minimum
- algorithm of Rodríguez/García-Palomares (2002)

Dr. Arno Formella

Rotation in quaternion space

• a rotation $U \cdot p$ of the point p with the matrix U can be expressed as

Dr. Arno Formella

- $q \star \bar{p} \star q^{-1}$ in quaternion space IH (Hamilton formula, $\mathbb{C} \sim \mathbb{R}^2$, $\mathbb{H} \sim \mathbb{R}^4$)
- where $\bar{p} = (0, p)$ is the canonical quaternion of the point p
- and $q = (\sin(\varphi/2), \cos(\varphi/2)u)$ is the rotation quaternion (with $u \in \mathbb{R}^3$ being the axis and φ the angle of rotation)
- instead of U with 9 constraint variables we have u and φ , i.e., 4 unconstraint variables

L∏²

55 / 195

Universida_{de}Vigo

SSIA-OSM

Matching Algorithms

- maximal clique detection within the graph of compatible distances
- geometric hashing of the pattern
- distance geometry

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

57 / 195

Universida_{de}Vigo

SSIA-OSM

• we generate a graph G = (V, E) (graph of compatible

• edges $e = (v_{ii}, v_{kl}) \in E$, if $d(p_i, p_k) \approx d(s_i, s_l)$

Dr. Arno Formella

58 / 195

Properties of Clique Detection

- the problem is NP-complete (however, we search only for *cliques* of size $\leq k$)
- fast algorithms need adjacency matrices
- if n = |S| = 5000 and k = |P| = 100 we need 30 GByte (counting only one bit per edge)

Geometric hashing

Maximal clique detection

distances)

• vertices $v_{ii} \in V$ all pairs (p_i, s_i)

• search for maximum cliques in G

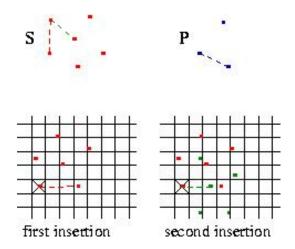
- preprocessing of the search space
- let's describe the two-dimensional case
 - we align each pair (s_i, s_i) with s_i at the origin and s_i in direction x
 - we insert some information for each other point $s_k \in S$ in a hashtable defined on a grid over S

SSIA-OSM

Universida_{de}Vigo

Dr. Arno Formella

Example: geometric hashing



U⊓²

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

61 / 195

ш,

Searching with geometric hashing

- we simulate an insertion of the points of *P* into the hashtable
- but we count only the non-empty entries
- many votes reveal candidates for partial alignments
- e.g., if we encounter a pair (p_i, p_j) such that for each other point of the pattern there is a non-empty cell in the hashtable
 we have found a perfect candidate

•

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

62 / 195

L∏²

Properties of geometric hashing

- grid size must be selected beforehand
- preprocessing time $O(n^{d+1})$
- searching time $O(k^{d+1})$
- works only for rigid motion transformations

Distance geometry

- we represent both sets *S* and *P* as distance graphs
- the vertices of the graphs are the points of the sets
- the edges of the graphs hold the distances between the corresponding vertices

SSIA-OSM

• e.g., $G_P = (P, P \times P)$ complete graph

The ideas behind psm

- we define adequate distance graphs G_P and G_S
- we search for subgraphs G'_{S} of G_{S} that are congruent to the graph G_P (allowing certain tolerances)
- we optimally align G_P with the subgraphs of G'_S
- we select the best one among all hits
- we extend the search to work with subgraphs of G_P as well
- we select a best subgraph as final solution

L∏²

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

65 / 195

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

66 / 195

Construction of the graphs

- let us assume that the pattern P is small
- we construct G_P as the complete graph
- we generate a dictionary D (ordered data structure) that contains all distances (intervals) between points in P
- we consider an edge between two vertices in G_S if the distance is present in the dictionary D

The four main steps of psm

- construction of the graphs with: exploitation of locallity properties
- search of subgraphs with: sophisticated backtracking
- alignment with: minimization of cost functions
- search of partial patterns with: reactive tabu search

Construction of the dictionary

- let $d_{ii} = d(p_i, p_i)$ be the distance between two points of P
- the dictionary will contain the interval

$$[(1-\varepsilon) \cdot d_{ij} , (1+\varepsilon)/(1-\varepsilon) \cdot d_{ij}] \in D$$

where $0 \le \varepsilon < 1$ is an appropriate tolerance

- the upper limit can be simplified to $(1 + \varepsilon)$ (but we loose the symmetry)
- we can join intervals in the dictionary *D* if they intersect

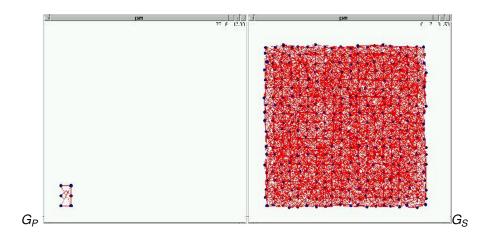
SSIA-OSM

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 67 / 195

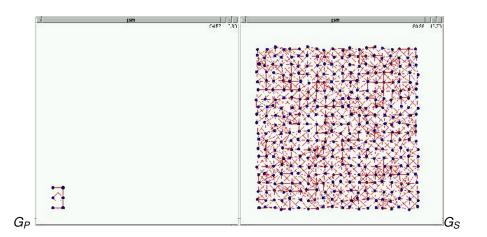
Universida_{de}Vigo

Dr. Arno Formella

Construction of the graphs that way



Construction of the graphs that way



Fast construction of the graphs

- we construct G_P as a connected (and rigid) graph mantaining only the short edges
- we order the points of *S* previously in a grid of size similar to the largest of the intervals

Universida de Nigo SSIA-OSM Dr. Arno Formella 70/195

Matching

- ullet let us assume (at the beginning) that G_P is a complete graph
- we order the points of G_P according to any order e.g. (p_0, \ldots, p_{k-1})

SSIA-OSM

Dr. Arno Formella

- we apply a backtracking algorithm that tries to encounter for earch p_i a partner s_i following the established ordering
- hence:

Universida_{de}Vigo

L⊓²

Backtracking for the search

- let us assume that we already found a subgraph $G_{s_0,...,s_i}$ where the graph $G_{p_0,...,p_i}$ can be matched
- we look for candidates s_{i+1} for the next point p_{i+1}
 - that must be neighbors of the point s_i within G_S
 - that must not be matched already and
 - that have similar distances to the s_i $(j \le i)$ as the p_{i+1} to the p_i $(j \leq i)$
- while there is a candidate we advance with i
- if there are no more candidates for s_{i+1} , s_i cannot be a partner for p_i neither (i.e.: backtracking)

L∏²

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

Termination of the algorithm

- the algorithm informs each time a candidate for for p_{k-1} has been found
- the algorithm terminates when
 - there are no more candidates for p₀ or
 - the first solution has been found

SSIA-OSM

Dr. Arno Formella

Universida_{de}Vigo

74 / 195

Optimizations of the basic algorithm

- reduction of the edges in G_P implies: reduction of the edges in G_S
- good ordering of the p_i implies: reduction of the number of candidates

SSIA-OSM

- consideration of the type of point (e.g. element type of the atom) implies: reduction of the number of candidates
- all heuristics imply: the backtracking advances faster

Universida_{de}Vigo

Search for partial alignments

- find the subset of the points of the pattern that can be matched best to some points in the search space
- NP-complete
- there are $|\mathcal{P}(P)| = 2^k$ possibilities to choose a subset

SSIA-OSM

- we apply:
 - genetic algorithm
 - reactive tabu search

76 / 195

Dr. Arno Formella

Genetic Algorithm

• maintain graph G_S as complete graph

• genome: sequence of bits indicating if a point belongs to the actual pattern or not

• crossover: two point crossover

• mutation: *flip*

• selection: roulette wheel

• cost function: distance and size of alignment

L∏²

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

77 / 195

Problems with GA

- G_S must be a complete graph You know a crossover operation for non-complete graphs?
- more precisely: we need a crossover (and mutation) operation that maintains a specific property of the graphs (e.g., connectivity, rigidness)
- or some new idea...

Termination of the GA

- it is not that easy
- once the first solution has been found
- once a sufficently good solution has been found
- after a certain number of iterations
- once diversity of population is too low

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

78 / 195

Reactive Tabu Search

- we start with an admissible solution
- we search for possibilities to improve the current solution
- if we can: we choose one randomly
- if we cannot:
 - we search for possibilities to reduce the current solution
 - if we can: we again try improvements
 - if we cannot: we jump to another admissible solution

SSIA-OSM

80 / 195

Universida_{de}Vigo

Dr. Arno Formella

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

The Tabu criterion

- we avoid repetitive movements taking advantage of a memory that stores intermediate solutions
- i.e.: we mark certain movements as tabu for a certain number of iterations
- reactive means: we adapt the tabu period dynamically

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

Reactive Tabu Search for psm

Universida_{de}Vigo

- representation of the problem: sets of indices of the matched points
- search for candidates to improve (add): (rigidly) connected neighbors within graph G_S
- search for candidates to reduce (*drop*): any point of the current solution that mantains the graph G_S connected (and rigid)

SSIA-OSM

Quality of a partial alignment

- evaluation of the cost of a solution: number of aligned points plus quality of the alignment
- remember: quality $Q \in]0,1]$, but we will use $Q \ge$ threshold
- hence, maximal quality: |P| + 1

82 / 195 SSIA-OSM Dr. Arno Formella

When do we terminate?

Universida_{de}Vigo

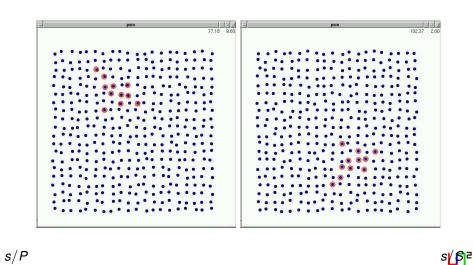
- not that simple
- once we found a sufficiently good solution
- once we have run a certain number of iterations

SSIA-OSM

Search for the largest common pattern

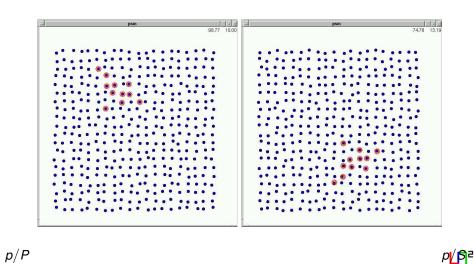
Dr. Arno Formella

Search for the largest common pattern



Dr. Arno Formella

Search for the largest common pattern



Dr. Arno Formella

Search for pattern with deformation

- instead of the complete graph use a connected sparse graph
- parts of the graph could be rigid
- the graph may specify hinges or torsion axis

psm

- command line tool with configuration file
- GUI
- web-site to perform searches

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

89 / 195

• improve the user interface

more applications

• enumerate more rigorously all locations

distances (look for the unusual first)

(up to now we have concentrated on the best solution)

pattern (e.g. torsion of parts, restriction of angles)

• allow local tolerances (e.g. per edge), especially with preknowledge of the biochemical properties

• improve heuristics with statistical analysis of distributions of

• extend the properties of the graphs defining deformations of the

SSIA-OSM

Dr. Arno Formella

90 / 195

No free lunch theorem

Possible extensions

reality

Universida_{de}Vigo

Fortunely, we are not interested in optimizing *some* function, rather we like to optimize a specific one, i.e., an optimization algorithm is only useful in his field (because necessarily there are fields where its performance is very poor).

SSIA-OSM

No free lunch theorem

theory

Basically states:

The performance of all optimization algorithms amortized over all objective functions is always equal (in discrete spaces).

With consequence: no algorithm can outperform (in general) exhaustive search (or even random search).

L∏²

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 91 / 195 Universida_{de}Vigo

Dr. Arno Formella

optimUMTS

Joint work with

optimUMTS Optimization of wireless UMTS networks

U⊓²

Universida_{di}Vigo SSIA-OSM Dr. Arno Formella 93 / 195

Objectives

- given a set of possible nodes B (base stations)
- find optimal subset
- to guarantee certain services (bandwidth)
- to an estimated user distribution

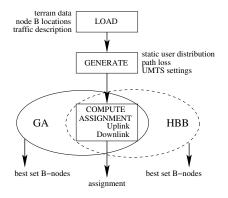
Fernando Aguado
 Departamento de Teoría de la Señal
 Universidad de Vigo

Luis Mendo
 Universidad Politécnica de Madrid

Universida $_{
m d}$ \(\text{Nigo}\) SSIA-OSM \(\text{Dr. Arno Formella}\) 94 / 195

Principal algorithm

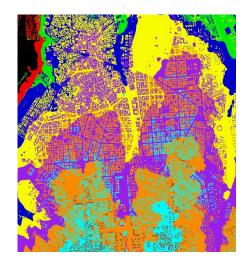
evolutionary and exact



96 / 195

Cartography of Madrid

input data



L∏²

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella

97 / 195

Calculation of attenuation matrix α

indirect input data

• simple logarithmic decay

$$L(m,k) = 10^{0,1\cdot(32,2+35,1\cdot\log(d(m,k)))}$$

$$\alpha(m,k) = \frac{G_{\text{eff}}(m)\cdot G_{\text{eff}}(k)}{L(m,k)}$$

- simplied Xia model
- mixed model: close—Xia, far—simple

L∏²

Universida_{de}Vigo

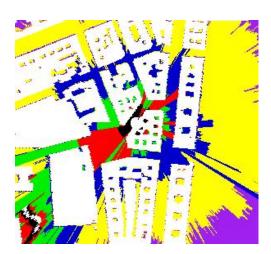
SSIA-OSM

Dr. Arno Formella

98 / 195

Coverage around a node B

computed input data



Traffic distribution

stochastic input data

- static distribution
- grid of estimated user with activation percentage
- polygons with Poisson process per service
- uniform distibution everywhere or only on streets

Calculation of SIR

objective function, part I

• uplink SIR γ_{UL} :

$$\gamma_{UL}(m,k) = (E_b/N_0)_{UL} \cdot b_0(k)/B_0$$

• downlink SIR γ_{DL} :

$$\gamma_{DL}(m,k) = (E_b/N_0)_{DL} \cdot b_0(k)/B_0$$

Пz

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

101 / 195

Calculation of power (Hanly and Mendo)

objective function, part IVa, iterative method

• initial power $P_0(k)$ for receiver k:

$$t_0(m,k) = \frac{\gamma_{UL}(m,k)}{\alpha(m,k)} \cdot N(m)$$
 $P_0(k) = \min_{m} \{t(m,k)\}$

• power $P_i(k)$ for receiver k in iteration i:

$$s_{i} = P_{i-1} \cdot \alpha(m)$$

$$t_{i}(m,k) = \frac{\gamma_{UL}(m,k)}{\alpha(m,k)} \cdot ((s_{i} - P_{i-1}(k) \cdot \alpha(m,k)) \cdot a(k) + N(m))$$

$$P_{i}(k) = \max_{m} \{t_{i}(m,k)\}$$

U⊓²

103 / 195

Calculation of noise

objective function, part II

• uplink noise $N_T(m)$ at transmitter m:

$$F(m) = 10^{0.1 \cdot N^{F}(m)}$$

$$N(m) = k_{B} \cdot T_{amb} \cdot B_{0} \cdot F(m)$$

• downlink noise $N_R(k)$ at receiver k:

$$F(k) = 10^{0,1 \cdot N^{F}(k)}$$

$$N(k) = k_{B} \cdot T_{amb} \cdot B_{0} \cdot F(k)$$

Ū²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

102 / 195

Termination criteria for iteration

objective function, part IVb, iterative method

$$\exists k \text{ with } P(k) > P_{\max}(k) \implies \text{ no assignment}$$

$$i > I_{\max} \implies \text{ no assignment}$$

$$\max_k \left\{ \frac{P_i(k)}{P_{i-1}(k)}, \frac{P_{i-1}(k)}{P_i(k)} \right\} \leq \Delta \implies \text{ assignment possible}$$

Calculation of assignment

objective function, part V

$$A(k) = m \text{ with } t(m,k) = \min_{m} \{t(m,k)\}$$

 $P(k) = \min_{m} \{t(m,k)\}$

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

105 / 195

Direct solution

objective function, part VII

downlink:

$$\beta(n,k,m) = \begin{cases} \rho(m,k) & \text{if } m=n \\ 1 & \text{otherwise} \end{cases}$$

calculation of SSIR $\tilde{\gamma}$:

$$\tilde{\gamma}(m,k) = \frac{\gamma_{DL}(m,k)}{1 + \rho(m,k) \cdot \gamma_{DL}(m,k)}$$

Validation of assignment

objective function, part VI

uplink:

$$P_{\min}(k) \leq P(k) \leq P_{\max}(k)$$

L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

106 / 195

System to solve for transmitter power calculation

objective function, part VIII

$$H(m,n) = \delta_{m,n} - \sum_{k \in \mathscr{A}^{-1}(m)} \frac{\alpha(n,k) \cdot \beta(n,k,m) \cdot \widetilde{\gamma}(m,k)}{\alpha(m,k)}$$

$$v(m) = P_{\text{plt}}(m) + \sum_{k \in \mathscr{A}^{-1}(m)} \frac{\widetilde{\gamma}(m,k) \cdot N(k)}{\alpha(m,k)}$$

$$H \cdot T = v$$

SSIA-OSM

Validation of power restrictions

restrictions I

• validation of maximum power of transmitter *m*:

$$0 < T(m) \leq T_{\max}(m)$$

Ū₽

Universida_{de}Vigo SSIA-OSM

Dr.

Dr. Arno Formella

09 / 195

Optimization with heuristic backtracking

exact method

Observation:

- if there is no assignment with certain *m* nodes B
- then there is no assignment with less nodes B

hence

- start with all nodes B
- eliminate nodes B til optimum found with heuristic backtracking

Validation of power restrictions

restrictions II

• calculation of downlink power of receiver *k*:

$$P(k) = \frac{\tilde{\gamma}(m,k)}{\alpha(A(k),k)} \left(\sum_{m=1}^{M} \alpha(m,k) \cdot \beta(m,k,A(k)) \cdot T(m) + N(k) \right)$$

• validation of transmitter maximum channel power:

$$P(k) \leq P_{\rm chn}$$

Ū²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

110 / 195

Termination with heuristic backtracking

- stop if stagnation occurs
 (if within a subtree all minimum solutions are at the same depth)
- finds optimum solution

Heuristics

how to be fast at the beginning

- ordering of nodes B plays an important role in finding fast good solutions
- reorder nodes B for backtracking according to heuristics
- for instance: eccentricity, random, number of initial connections, etc.

Universida_{de}Vigo SSIA-OSM 113 / 195 Dr. Arno Formella

Genom generation I

- matrix representation of nodes B
- exploiting locality properties
- using allele: usable, unusable, used, fixed

Optimization with genetic algorithm (GA)

evolutionary method

- steady-state incremental evolution (in each iteration two new decendents are generated)
- selection: roulette wheel
- mutation: flip
- crossover: two-point-cyclic
- quality: number of nodes B plus power as tiebreak

SSIA-OSM

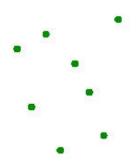
Universida_{de}Vigo

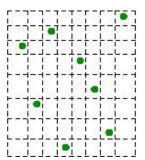
Dr. Arno Formella

114 / 195

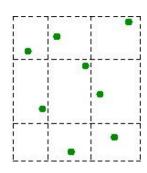
L∏²

Genom generation II





Genom generation III

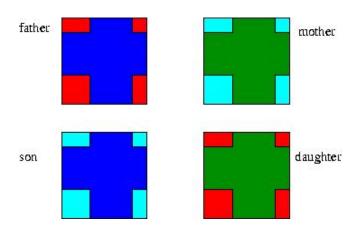


U₁²

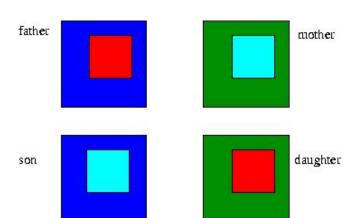
Universida_{de}Vigo

SSIA-OSM Dr. Arno Formella 117 / 195

Crossover II



Crossover I

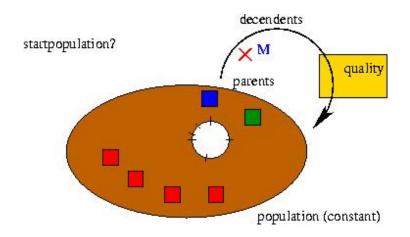


U⊓² SSIA-OSM Dr. Arno Formella 118 / 195

Evolution

Universida_{de}Vigo

Universida_{de}Vigo

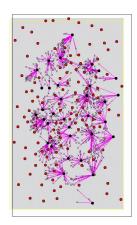


U₁²

SSIA-OSM Dr. Arno Formella 120 / 195

U⊓²

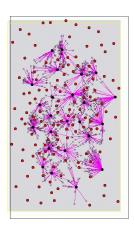
Assignment and heuristic branch result

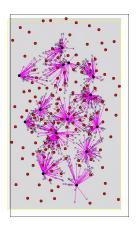


Further research and implementations

- use of MonteCarlo method
- to find best subset of nodes B
- for several user distributions
- i.e., find best subset to satisfy different scenarios

GA results with and without downlink





L∏² Dr. Arno Formella

shaprox

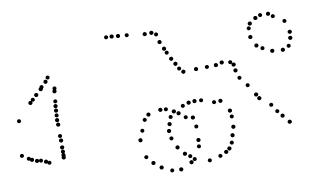
Approximation of point sets with shapes

Informal problem description

- given a set of points in the plane
- construct a geometric figure interpolating the sample points
- that reasonably captures the shape of the point set

Example

point set



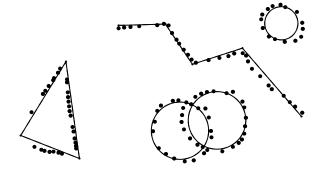
Applications

- pattern recognition
- object definition in geographic information systems
- CAD/CAM services
- vectorization tasks
- curve reconstruction in image analysis
- single-computation pose estimation
- geometric indexing into pictorial databases
- shape tracking etc.

Universida d_dN^2 SSIA-OSM Dr. Arno Formella 126/195

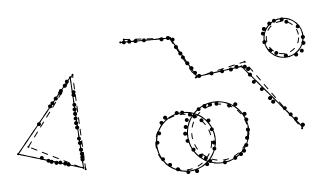
Example

initial shapes



Example

adapted shapes



₽

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

Approximation task

Three steps:

- clustering of the points to identify the individual parts of a set of
- generating of an initial guess of the individual shapes,
- adapting the individual shapes to the underlying point set according to some distance metric.

SSIA-OSM

Dr. Arno Formella

130 / 195

Universida_{de}Vigo

Brain storming

distances, metrics, optimization, local and global minima, discrete-continuous, partially plain functions, multi-objetive optimization, local decisions, multi-scale, simplification, VORONOI-diagram, DELAUNAY-diagram, graph analysis, similarity detection, classification (with and without supervision), filtering

Polygonal approximation

type of clustering

- Given a set of points of a plane curve,
- construct a polygonal structure
- interpolating the sample points
- that reasonably captures the shape of the point set.

Three approaches for polygonal approximation

- α -shapes
- crust
- curve approximation

₽

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella

nella 133 / 195

Alpha-shapes

algorithm

- Compute the DELAUNAY triangulation of the point set.
- ullet Eliminate all triangles of the resulting graph which have a radius larger than lpha times the minimum radius.
- The final shape is given by the outer edges of the remaining graph.

Alpha-shapes

application

The algorithm is able to detect

- the outer boundary of a set of points
- which covers more or less evenly distributed the interior of a shape.

Ū₽

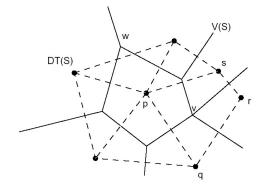
Universida_{de}Vigo

SSIA-OSM

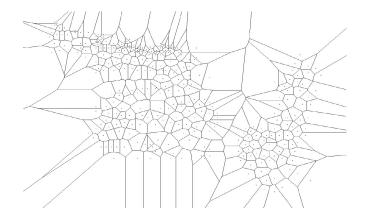
Dr. Arno Formella

134 / 195

VORONOI-diagram



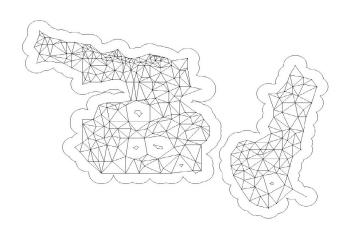
VORONOI-diagram with more points



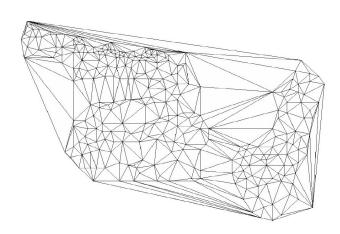
U⊓²

-Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 137 / 195

Alpha-shapes Example



DELAUNAY-diagram



Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 138 / 195

Alpha-shapes

short comings

- Need of suitable alpha.
- Alpha is constant over the entire point set.

SSIA-OSM

• Interior points needed.

CRUST

application

The algorithm is able to reconstruct

- a curve
- that is sampled sufficiently dense
- especially smooth curves, i.e., possibly many component curves without branches, endpoints, or self-intersections.

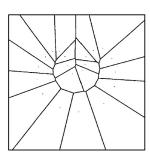
L∏²

Universida_{(lk}Vigo SSIA-OSM Dr. Arno Formella 141 / 195

CRUST

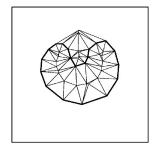
Example

-Universida_{de}Vigo



SSIA-OSM

Dr. Arno Formella



CRUST

algorithm

The crust

- is the set of edges
- selected from the Delaunay triangulation of the initial point set
- extended by its Voronoi points
- where both endpoints of the edges belong to the initial set.

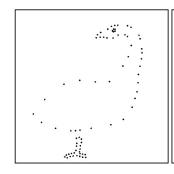
SSIA-OSM

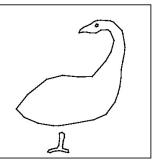
Dr. Arno Formella 142 / 195

CRUST

Universida_{de}Vigo

Example





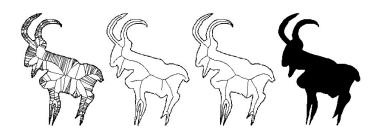
Curve reconstruction

algorithm

- Computes the GABRIEL graph as a subgraph of the Delaunay graph
- (an edge between two input points belongs to the Gabriel graph if a disk with this edge as diameter does not contain any other input point).
- Eliminate the edges which do not fulfill the local granularity property,
- i.e., at each point only the two shortest edges are maintained.

Universida_{(l}Nigo SSIA-OSM Dr. Arno Formella 145 / 195

Skeleton



Curve reconstruction

application

- The method works well if there exists a regular interpolant,
- that is, a polygonal closed curve such that the local granularity,
- defined as minimum distance to an input point,
- at each point of the curve is strictly smaller
- than the local thickness at that point,
- defined as the distance to the medial axis of the shape.

L⊓²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

146 / 195

Skeleton

Universida_{de}Vigo

(a) Planar Shape

(c) Voronoi Diagram

(b) Polygonal Approximation

(d) Pruned Skeleton

Dr. Arno Formella

U⊓²

SSIA-OSM

148 / 195

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

Simplification problem

objective

• Given polygonal chain (or polygon) P (with n vertices),

SSIA-OSM

• approximate P by another one Q whose vertices are a subset of k vertices of P.

L∏²

Universida_{de}Vigo

Dr. Arno Formella

149 / 195

Universida_{de}Vigo

SSIA-OSM

• min-#-problem: minimize the number of vertices of an

approximating polygonal chain (or closed polygon) with the error

• min– ε –problem: minimize the error of an approximating polygonal

chain (or closed polygon) consisting of a given number of

Dr. Arno Formella

150 / 195

Simplification problem

solutions

- Both problems can be solved in optimal time $O(n^2)$.
- There exist near-optimal algorithms for solving the min-#-problem for the Euclidean distance which for practical problems outperform the optimal algorithms.
- There exists a genetic algorithm to cope with the min-#-problem which found near optimal solutions in the presented experiments.

Approximation problem

vertices.

Simplification problem

within a given bound;

two variants

objective

• Given polygonal chain (or polygon) P (with n vertices),

SSIA-OSM

- approximate P by another one Q whose k vertices can be placed arbitrarily in the plane.
- min-#-problem: minimize the number of vertices with the error within a given bound;
- min- ε -problem: minimize the error consisting of a given number of vertices.

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella 151 / 195

Universida_{de}Vigo

Dr. Arno Formella

Approximation problem

solutions

- There exists an algorithm that approximates the point set with a set of individual lines.
- Joining the lines is problematic in certain cases.
- There exists an algorithm that approximates with a linked chain whenever the input polyline is monotonic (runtime $O(n^k)$).
- There exists an approximation version of this algorithm which runs much faster (no implemention known).

L∏²

153 / 195

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

shaprox

distance functions: point-shape I

line

$$\delta_{L_2}(P_i, \mathscr{S}) = \left| \operatorname{Det}(P_i - L, (\cos \varphi, \sin \varphi)^T) \right|$$

circumference

$$\delta_{l_2}(P_i, \mathscr{S}) = |||P_i - C|| - \rho|$$

set of circumferences

$$\delta_{L_2}(P_i,\mathscr{S}) = \min_{(C_j,\rho_j) \in (\mathscr{C},\mathscr{R})} |\|P_i - C_j\| - \rho_j|$$

L∏²

shaprox

shape description

A shape \mathscr{S} is defined by a number of points and certain parameters:

- line: a point $L \in \mathbb{R}^2$ and an angle $\varphi \in \mathbb{R}$;
- circumference: a center point $C \in \mathbb{R}^2$ and a radius $\rho \in \mathbb{R}$;
- set of circumferences: set of pairs of center points and corresponding radii, i.e., $(\mathscr{C},\mathscr{R}) \subset \mathbb{R}^2 \times \mathbb{R}$;
- polyline or polygon: an ordered set of corner points $\mathcal{Q} = \{Q_1, Q_2, \dots, Q_k\}, Q_i \in \mathbb{R}^2, j = 1, \dots, k$, where the only difference between the two shapes is that for a polygon the last and first corner are connected:
- rounded box: a line segment defined by two points $Q_1, Q_2 \in \mathbb{R}^2$, an aspect ratio $\alpha \in \mathbb{R}$, and a corner radius $\rho \in \mathbb{R}$.

Universida_{de}Vigo

Dr. Arno Formella

154 / 195

shaprox

distance functions: point-shape II

 polyline or polygon, first we need the distance for a segment $\overline{QQ_i} = Q_{i+1} - Q_i$:

$$\begin{split} \delta_{L_2}(P_i, \overline{QQ_j}) &= \\ \begin{cases} & \|P_i - Q_j\| & \text{if } (P_i - Q_j)^T \overline{QQ_j} < 0 \\ & \|P_i - Q_{j+1}\| & \text{if } (P_i - Q_{j+1})^T \overline{QQ_j} > 0 \\ & \left|\frac{\operatorname{Det}(\overline{QQ_j}, P_i - Q_j)}{\|\overline{QQ_j}\|}\right| & \text{otherwise} \end{cases} \end{split}$$

and obtain for a polyline or polygon

$$\delta_{L_2}(P_i,\mathscr{S}) = \min_{Q_i \in \mathscr{Q}} \delta_{L_2}(P_i,\overline{QQ_j})$$

where for a polyline the index j runs from 1, ..., k-1 and for a polygon from 1, ..., k with $Q_{k+1} = Q_1$.

SSIA-OSM

L∏²

Universida_{de}Vigo

Dr. Arno Formella

distance functions: point-shape III

rounded box

$$\delta_{\mathsf{L}_2}(\mathsf{P}_i,\mathscr{S}) = \left| \min_{j=1,\dots,4} \delta_{\mathsf{L}_2}(\mathsf{P}_i,\overline{\mathsf{Q} \mathsf{Q}_j}) \pm
ho
ight|$$

where $Q_3 = Q_2 + \alpha \ Q_{12}^{\top}$ and $Q_4 = Q_1 + \alpha \ Q_{12}^{\top}$ being Q_{12}^{\top} the left turned perpendicular vector to $Q_2 - Q_1$ of same length. $+\rho$ is taken when the point P_i lies inside the rectangular box through Q_1, \ldots, Q_4 , and $-\rho$ when P_i lies outside.

157 / 195

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

shaprox

distance functions: point set-shape

RMS

$$\delta_{\mathrm{RMS},L_2}(\mathscr{P},\mathscr{S}) = \sqrt{rac{1}{l}\sum_{P_l\in\mathscr{P}}\delta_{L_2}(P_l,\mathscr{S})^2}$$

AVG

$$\delta_{\mathrm{AVG},L_2}(\mathscr{P},\mathscr{S}) = \frac{1}{l} \sum_{P_i \in \mathscr{P}} \delta_{L_2}(P_i,\mathscr{S})$$

MAX

Universida_{de}Vigo

$$\delta_{ ext{MAX},L_2}(\mathscr{P},\mathscr{S}) = \max_{P_i \in \mathscr{P}} \delta_{L_2}(P_i,\mathscr{S})$$

ullet or $\delta_{\mathrm{RMS},\mathit{V}}(\mathscr{P},\mathscr{S})$ or $\delta_{\mathrm{AVG},\mathit{L}_1}(\mathscr{P},\mathscr{S})$, etc

distance functions: non-euclidean

vertical distance to a line:

$$\delta_V(P_i, \mathscr{S}) = \left| P_i^2 - L^2 - (P_i^1 - L^1) \cdot \sin \varphi / \cos \varphi \right|$$

• length of the segments could have an influence as a weight

$$\delta_{wL_2}(P_i, \overline{QQ_j}) = \left| \operatorname{Det}(\overline{QQ_j}, P_i - Q_j) \right|$$

Ū₽

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

158 / 195

shaprox

Universida_{de}Vigo

algorithm for local search

- Algorithm of RODRÍGUEZ/GARCÍA-PALOMARES
- derivative—free minimization method
- proved convergence for either locally strictly differentiable or non–smooth locally convex functions.

Subsidiary objective

- Til now concentrated on the minimization of a single function.
- However, in our optimization problem, it can happen that there is no change in the value of the distance function although the shape is modified.

Пz

Universida_d/Vigo SSIA-OSM Dr. Arno Formella 161 / 195

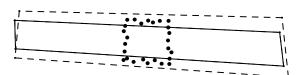
shaprox

Subsidiary objective: idea

• Minimize perimeter as well.

shaprox

Example: Subsidiary objective



Universida d_0Nigo SSIA-OSM Dr. Arno Formella 162 / 195

shaprox

Subsidiary objective: possible solution

- Formulate a convex combination of all objectives,
- i.e., optimize the single-objective function

$$f(x) = \beta_1 f_1(x) + \beta_2 f_2(x) + \cdots + \beta_l f_l(x)$$

- where the $\beta_i > 0$, for j = 1, ..., I, are strictly positive weights,
- $f_i(\cdot): \mathbb{R}^n \longrightarrow \mathbb{R}$ are the individual objective functions.

SSIA-OSM

L∏²

Subsidiary objective: short coming of possible solution

- Explores the Pareto front defined by the weights β_i ,
- it might be difficult to find weights such that the encountered minimum is sufficiently close to the minimum considering only the principal objective $f_1(\cdot)$.

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

165 / 195

shaprox

Subsidiary objective: better solution

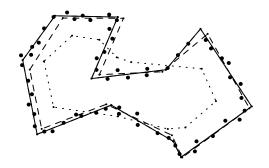
- modify the comparison $f(z) \le f(x) \tau^2$ (in the local search algorithm)
- with the following iteratively defined comparison function for I objectives:

$$[f_1(z), ..., f_l(z)] \le_{\tau^2} [f_1(x), ..., f_l(x)] \iff$$

 $\forall j = 1, ..., l : f_j(z) \le f_j(x) - \tau^2 \text{ or}$
 $(j < l \text{ and } f_j(z) \le f_j(x) \text{ and } f_{j+1}(z) \le f_{j+1}(x) - \tau^2)$

shaprox

Example: convex combination as objective function



L∏²

Universida_{de}Vigo

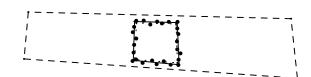
SSIA-OSM

Dr. Arno Formella

166 / 195

shaprox

Example

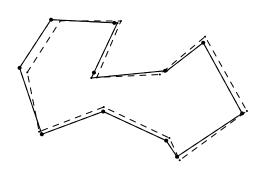


SSIA-OSM

NP-Completeness and non-convexity of the objective function

shaprox

Examples: wedge



Ū₽

- Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

169 / 195

Universida_{de}Vigo

SSIA-OSM

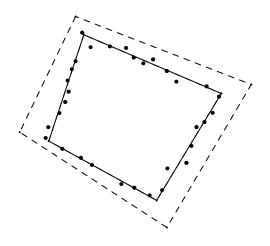
Dr. Arno Formella

170 / 195

U₽

shaprox

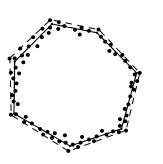
Examples: simple polygon



shaprox

Universida_{de}Vigo

Examples: convex hull



U₁²

171 / 195

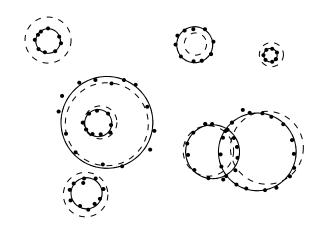
SSIA-OSM

U₽

Universida_{de}Vigo SSIA-OSM Dr. Arno Formella

Dr. Arno Formella

Examples: circumferences



Ū₽

Universida_{de}Vigo 173 / 195 SSIA-OSM Dr. Arno Formella

Universida_{de}Vigo

shaprox

Examples: influence of metrics

SSIA-OSM

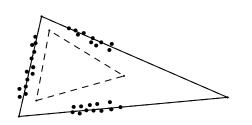
Dr. Arno Formella

174 / 195

L∏²

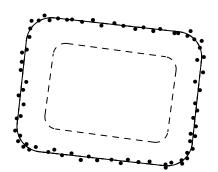
shaprox

Examples: completing shapes



shaprox

Examples: rounded rectangle



SSIA-OSM

Ū₽

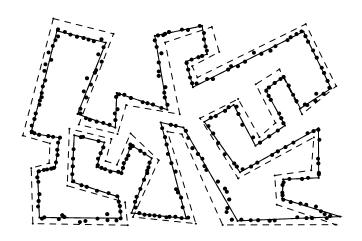
L∏²

175 / 195

Universida_{de}Vigo

Dr. Arno Formella

Examples: complex polygon



U⊓²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

177 / 195

SSIA-OSM

Dr. Arno Formella

178 / 195

Evolutive methods

with meta heuristics

- (reactive) tabú search (since 1986)
- random search (since 196X)
- simulated anealing (since 196X)
- genetic algorithms (since 1975)
- genetic programming
- (neural networks)
- ant colony optimization (since 1992)
- particle swarm optimization (since 1995)
- guided local search (since 1997)
- iterated local search (since 1999)
- variable neighborhood search (since 1999)

Evolutive methods

based on natural fenomena

- simulated anealing
- cristalizaton of materials
- evolution (mutation, recombination, selection)
- competitive/colaborative systems
- social interactions

Evolutive methods

paradigms

Universida_{de}Vigo

- work with populations of individuals (only one individual and a memory...)
- there are modification processes (mutation, modification, reproduction)
- *performance* of the individuals in the environment based on a *fitness* which usually is the objective function (but not necessarily)

SSIA-OSM

decisions are drawn probabilistically

L∏²

Evolutive methods

genetic algorithms

- one distinguishes genotype (codification) and fenotype
- there exists a bijection between genotype and fenotype
- modifications (mutation and crossover) is done over the genotypes
- the fitness is evaluated over the fenotypes
- mutation (which one?), recombination (types?), selection (types?)

L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

181 / 195

Evolutive methods

evolutive strategies

- an amplification of evolutive programming
- each individual maintains parameters that guide the mutations
- these parameters are modified in the same way as the proper fenotypes
- mutation (types?), selection (types?)

Evolutive methods

evolutive programming

- there exists only the fenotype (with its codification)
- modification (mutation) is realized over the fenotypes of copies
- the fitness is evaluated over the fenotypes
- mutation (types?), selection (types?)

SSIA-OSM Dr. Arno Formella 182 / 195

Evolutive methods

genetic programming

Universida_{de}Vigo

- the codification of the fenotype is a program
- the programs are modified with adecuate operations
- mutation (types?), selection (types?)

recent example (André Falcão, Residue fragment programs for enzyme classification, Proceedings BKDB2005, pp.24–28, 2005).

SSIA-OSM

Evolutive methods

differential evolution

- the codification of the fenotype is a vector of characteristics
- the vector of an individual is modified with the differences to other vectors (individuals)
- modifications (types?), selection (types?)

Ū²

Universida_{de}Vigo SSIA-OSM

Dr. Arno Formella

85 / 195

Evolutive methods

ant colonies

- the individuals leave information (feromonas) in the search space
- the decisions are based on individual information and on the feromonas encountered
- the information (feromonas) is volatile
- the feromonas or statistical behavior of the individuals define the solution

Evolutive methods

swarm intelligence

- the individuals of the population interact in a social way
- the decisions of each individual depend on the own wishes and the information available from the others
- ant colonies
- particle swarms

L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

186 / 195

Particle swarm optimization

characteristics

- simple to describe
- simple to implement
- few parameters to adjust
- usually small population are used
- the number of objective function evaluations is usually small
- usually is very fast

premature convergence occurs whenever all individuals are located in a small area of the search space

SSIA-OSM

Particle swarm optimization

some details

- each individual communicates with its neighborhood (usually, the neighborhoods overlap)
- and maintains local information (best solutions viewn til now, search direction, etc.)
- in most cases, the neighborhood is fixed
- the local information is modified with the help of the information gathered in the neighborhood (or just from the best neighbor)
- local changes are confined to avoid explosions (dramatic changes)
- the method is able to solve discrete problems

L∏²

Universida_{de}Vigo

SSIA-OSM

Dr. Arno Formella

SSIA-OSM

190 / 195

Particle swarm optimization

versions

binary version: the variables are interpreted as binary values according to a distribution of threshold

discret version: the variables are interpreted as integer values (for instance with simple rounding)

dynamic version: the search space is reinitialized, the local variables are reset, for instance: $p_i = x_i$ or re-evaluate p_i and decide between p_i ans x_i .

Particle swarm optimization

velocity actualization

$$v_i = \xi(v_i + U[0, \varphi_1](p_i - x_i) + U[0, \varphi_2](p_g - x_i))$$

 $x_i = x_i + v_i$

con

- x_i vector of current positions
- v_i vector of current directions
- p_i best local position vector
- p_a best position vector of group (neighborhood)
- $\varphi_1 = 2.05$
- $\varphi_2 = 2.05$
- $\xi = 0.729$

Universida_{de}Vigo

Dr. Arno Formella

Particle swarm optimization

convergence

- the individuals should exhibit certain diversity
- one needs a similarity measure
- diversity can be forced dynamically adapting the parameters
- one might use lack of diversity as stopping condition

SSIA-OSM

multi-objective optimization

Pareto

- there is more than one independent objective function
- Pareto optimal (global): every other component for all other solutions is worse (or equal) (other names are: efficient points, dominant points, non-interior points)
- Pareto optimal (local): every other component for all other solutions in a local neighborhood is worse (or equal)
- the Pareto frontier describes the trade-off between the different objectives

Universida_{da}Nigo SSIA-OSM Dr. Arno Formella 193 / 195

Multi-objective optimization

with evolutionary methods

- evolutionary methods can approximate the Pareto frontier in parallel (with the help of the diversity among the individuals)
- for instance particle swarm systems varying the weights of a convex combination periodically during the iterations

Universida_{(d}Vigo SSIA-OSM Dr. Arno Formella 195/195

Multi-objective

techniques for a solution

- convex combination of the objectives (to obtain the Pareto frontier one has to explore the coefficient space)
- homotopic techniques, i.e., compute the entire Pareto frontier (works in most cases just for two objectives)
- goal programming, i.e., fix values for all objectives and minimize the distance of all objectives to the predefined goals (according to some convenient distance metric)
- priority optimization, i.e., fix thresholds for all but one objective beforehand and optimize above the threshold according the most important one
- priorization (multi-level) programming, i.e., optimize according to a predefined ordering of the objectives.

Universida_{(de}Vigo SSIA-OSM Dr. Arno Formella 194 / 195