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Course organization
course notes

Homepage:
http://trevinca.ei.uvigo.es/~formella/doc/ssia12

whiteboard
(illustrations, notations, ideas for proofs, algorithms etc.)

very short introduction to certain aspects related to optimization
and search methods, and some applications
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Course organization
class room hours (preliminary)

Optimization and Search Methods
fridays, 16:00–18:00

28.09. 05.10. 19.10. 26.10. 02.11.
class class (no-class) class lab
09.11. 16.11. 23.11. 30.11. 07.12.
class class class lab lab
14.12. 21.12. 11.01. 18.01. 25.01.
class class class class eval
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Course organization
class room hours

Dr. Arno Formella
office hours: tuesdays, 09:30-13:30 and 17-19
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Bibliography
books

OUR 519.8.15, OUR 519.8/23, OUR 519.8/24, OUR 519.8/46,
OUR 519/17, OUR 519/20
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Your work
homework, lab hours, presentations

browse through the web pages provided in the following slides

sort the information provided into the categories of optimization
methods as mentioned below

find a web service that allows you to compute the derivation of a
function

use the NEOS–server to find the minimum of the function

f (x) = a(x−b)2 + c + d cos(e(x− f ) + g)

for some (different) values of the parameters (maybe you start
with d = e = f = g = 0).
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Your work
more extensive research task I

1 form a group with at most one other student
2 select in accordance with Prof. Arno Formella one of the

proposed algorithms on the next slide
3 elaborate a not too short and not too long article (6 to 10 pages)

about the algorithm, including at least the aspects stated on the
next but one slide.
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Your work
more extensive research task II, examples

Nelder Mead algorithm

Newton Raphson

Rodríquez García-Palomares algorithm

Levenberg Marquardt algorithm

great deluge algorithm

local unimodel sampling
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Your work
more extensive research task III

your article should treat the following issues

description of the algorithm

main field of application

advantages and disadvantages compared to other algorithms

available software/implementations

critical discussion of their APIs

references on the algorithm and its applications

SSIA-OSM Dr. Arno Formella 9 / 195



Bibliography I
links

(working in september 2012)

http://www.neos-server.org
online optimization project

http://www.coin-or.org/index.html
pperation research

http://www.cs.sandia.gov/opt/survey
global optimization

http:
//www.mat.univie.ac.at/~neum/glopt.html
global optimization
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Bibliography II
links

http://www.stanford.edu/~boyd/index.html
Stephen P. Boyd, Stanford

http://iridia.ulb.ac.be/~mdorigo/ACO/
ant colony optimization

http://plato.asu.edu/gom.html
continuous global optimization software

http://www.swarmintelligence.org/index.php
particle swarm optimization

Rui Mendes. Population topologies and their influence in particle
swarm performance. PhD Thesis, Universidad de Minho, 2004.
http://www.di.uminho.pt/~rcm/
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Motivation
what is it?

Optimizing means

search for (at least) one solution

which is different from other possible solutions

in the sense of being (sufficiently) extreme

within an ordering

possibly taking into account certain restrictions

(within a certain limit of computing time).

Example: hiking in a mountain ridge (with fog).
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Motivation
examples

Problems which one wants to solve:

minimizing cost

maximizing earnings

maximizing occupation

minimizing energy

minimizing resources
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Basic concepts
observations

the search space and/or the objective function can be

discrete or continous

total or partial

simple or complex, especially in respect to evaluation time

explicite, implicite, experimental

linear or non-linear

convex or non-convex

differentiable or non–differentiable

constrained or unconstrained

static or dynamic

The objective function must be confined.

SSIA-OSM Dr. Arno Formella 14 / 195



Basic concepts
objective functions

Minimization

Maximization

Obviously any maximization problem can be converted to a
minimization problem.
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Basic concepts
conditions

restrictions

feasable solution (feasibility problem)

coding of the solutions
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Basic concepts
classification

(after NEOS server (almost), Argonne National Laboratory)

continuous discrete

constrained
bound

constrained
nonlinearly

programming
linear

least square
nonlinear

equations
nonlinear

unconstrained

constrained

programming
integer

optimization
numerical

nondifferentiable
optimization

network
programming

stochastic
programming
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Basic concepts
types

to be distinguished

local optimization: usually one starts from an initial solution and stops
when having found a local (close) minimum

global optimization: one tries to find the best solution globally (among
all possible solutions)
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Basic concepts
problems

The main problem of global optimization is: getting trapped in a
local minimum (premature convergence)
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Basic concepts
global optimization (incomplete intent)

optimization
global

population
based

linear programming
integer programming

dynamic programming
divide&conquer

branch&bound

fixed point
methods

gradient
methods

evolution strategies
genetic algorithms

genetic programming
memetic algorithms

particle swarms

evolutionary programming
differential evolution

ant colony

annealing
simulated

hill−climbing
stochastic

local search
iterated

exact methods

probabilistic

meta heuristics

heuristics

constructive

local search

deterministic

single solution

tabu search
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A real application
psm

approximate Point Set Match in 2D and 3D

An application where we need sophisticated search and optimization
techniques.
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Dónde está Wally?
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Motivation
psm

searching of patterns
(relatively small sets of two– or three–dimensional points),
within search spaces
(relatively large point sets)

comparing point sets

key words
geometric pattern matching, structure comparison, point set
matching, structural alignment, object recognition
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Joint work with

Thorsten Pöschel

some ideas from: Kristian Rother, Stefan Günther

Humboldt Universität—Charité Berlin
http://www.charite.de/bioinf/people.html

psm is one of the algorithms available at
http:
//farnsworth.charite.de/superimpose-web
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Search of a substructure in a protein
search space
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Search of a substructure in a protein
search pattern
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Dónde está Wally?
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Informal problem description

given a search space and

a search pattern,

find the location within the space
which represents best the pattern
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Extensions

find the best part of the pattern
which can be represented within the search space

allow certain types of deformation of the pattern

find similar parts within the same point set

SSIA-OSM Dr. Arno Formella 29 / 195



Formal problem description

search space:
S = {s0,s1, . . . ,sn−1} ⊂ IRd , |S|= n

search pattern:
P = {p0,p1, . . . ,pk−1} ⊂ IRd , |P|= k ≤ n

dimension d = 2 or d = 3
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Search and alignment

the aligning process can be separated in two parts
find the matching points in the pattern and the search space
find the necessary transformation to move the pattern to its
location

an approximate alignment must be qualified
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Matching

a matching is a function that assigns to each point of the search
pattern a different point of the search space

µ : P −→ S injective, i.e.,

if pi 6= pj then µ(pi) 6= µ(pj)

let’s write: µ(pi) = s′i and µ(P) = S′
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Transformations

transformations which maintain distances:
translation, rotation and reflection

transformations which maintain angles:
translation, rotation, reflection and scaling

deforming transformations:
shearing, projection, and others (local deformations)
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Congruent and similar transformations

rigid motion transformation
(euclidean transformation or congruent transformation)
only translation and rotation

similar transformation
rigid motion transformation with scaling

we may allow reflections as well (L–matches)

let T be a transformation (normally congruent)

we transform the pattern

let’s write: T (pi) = p′i and T (P) = P ′
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Alignment

a matching µ together with a transformation T is an alignment
(µ,T )

rigid motion transformation: congruent alignment

with scaling: similar alignment

with reflection: L–alignment
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One–dimensional example
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Distance of an alignment

let (µ,T ) be an alignment of P in S

we can measure the distances between transformed points of the
pattern and their partners in the search space

i.e., the distances

di = d(T (pi),µ(pi)) = d(p′i ,s
′
i )

obviously, if di = 0 for all i
then the alignment is perfect
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Examples of different distances of an alignment

root mean square distance (RMS)

d =

√
1
n ∑

i
(p′i − s′i )

2

average distance (AVG)

d =
1
n ∑

i
|p′i − s′i |

maximum distance (MAX)

d = m«ax
i
|p′i − s′i |
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Quality of an alignment

there are many interesting distance measures

a distance d has its value in [0,∞[

we use the quality Q of an alignment Q = 1/(1 + d)

(other possibility: Q = exp(−d))

hence: Q = 1 perfect alignment, Q ∈]0,1]

and: Q < 1 approximate alignment
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Formal problem description

given a search space S, and

given a search pattern P

given a distance measure

find an alignment (µ,T ) of P in S
with minimum distance d (or maximum quality Q)
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Perfect congruent alignments

congruent alignments in IR3 (Boxer 1999):

O(n2,5 4
√

log∗ n + kn1,8(log∗ n)O(1)︸ ︷︷ ︸
output

logn)

for small k the first term is dominant

log∗ n is smallest l such that

22...
2}

l−veces≥ n log∗ n = 5 =⇒ n ≈ 265000
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Perfect similar alignments

similar alignments in IR3 (Boxer 1999):

O(n3 + kn2,2︸︷︷︸
output

logn)

searching approximate alignments and/or partial alignments
is a much more complex problem
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Perfect alignments
ideas

choose one triangle, e.g. (p0,p1,p2), of P

search for all congruent triangles in S
(and their corresponding transformations)

verify the rest of the points of P
(after having applied the transformation)

the run time is not proportional to n3 (in case of congruence)
because we can enumerate the triangles of S in a sophisticated
manner and there are not as many possibilities
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Approximate alignments

as stated, we work in two steps
we search for adequate matchings µ

(according to a certain tolerance)
we calculate the optimal transformations T
(according to a certain distance measure)

we select the best alignment(s)
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Optimal Transformation

let S′ = µ(P) be a matching

let d be a distance measure

we look for the optimal rigid motion transformation T ,
(only translation and rotation), such that

d(T (P),µ(P)) = d(P ′,S′) is minimal
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Root mean square distance

d =

√
1
n ∑

i
d(p′i ,s

′
i )

2

=

√
1
n ∑

i
(U ·pi + t− s′i )

2

U 3x3 rotation matrix, i.e., orthonormal

t translation vector

Objective: find U and t such that d is minimal
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A little bit of math

we observe: t and U are independent

with the partial derivative of d according t

∂d
∂ t

= 2 ·∑
i

(U ·pi + t− s′i ) = 2U ∑
i

pi + 2nt−2∑
i

s′i

we obtain

t = −U
1
n ∑

i
pi +

1
n ∑

i
s′i

= −U ·pc + s′c

where pc and s′c are the centroids of both sets
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Optimal Rotation

with the above, d can be written as

d =

√
1
n ∑

i
(U ·pi + t− s′i )

2

=

√
1
n ∑

i
(U · (pi −pc)− (s′i − s′c))2

where U is a matrix with restrictions (has to be orthonormal)
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Extremal points of functions with restrictions

one converts the problem with restrictions

with the help of LAGRANGE multiplies into

a problem without restrictions

which exhibits the same extremal points
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Let’s skip the details

basically, we calculate first and second derivative according to the
entries uij of U

we search for the extremal points

KABSCH algorithm 1976, 1978

open source code at my home page
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KABSCH algorithm

let S be the matrix of rows containing the s′i
let P be the matrix of rows containing the pi

we compute R = S ·P>

we set A = [a0 a1 a2] with ak being the eigenvectors of R>R

we compute B = [‖Ra0‖ ‖Ra1‖ ‖Ra2‖]
and finally, we get U = B ·A>
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Introduction of scaling

let us introduce a scaling value σ ∈ IR

d =

√
1
n ∑

i
(σU · (pi −pc)− (s′i − s′c))2

let p′′i = U · (pi −pc) be the translated and rotated point pi

let s′′i = s′i − s′c be the centralized point s′i

the solution for the optimal σ : σ =
∑

i
〈s′′i ,p′′i 〉

∑
i
〈p′′i ,p′′i 〉
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Different distance measures—different alignments

AVG

MAX

RMS
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Optimal transformations for non–derivable distance
measures

if the function for d is not derivable, e.g., the average

we use a gradient free optimization method
(only with evaluations of the function)

recently developed iterative method that is guaranteed to
converge towards a local minimum

algorithm of RODRÍGUEZ/GARCÍA–PALOMARES (2002)
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Idea behind RODRIGUEZ/GARCIA–PALOMARES

let f (x) be the function to be minimized

we iterate contracting and expanding adequately parameters
hk > 0 and τ > 0 such that

f (xi+1) = f (xi ±hk dk )≤ f (xi)− τ2

where dk is a direction taken from a finite set of directions
(which depends on the point xi )

with τ −→ 0, xi converges to local optimum
(while there are no constraints)

SSIA-OSM Dr. Arno Formella 55 / 195



Rotation in quaternion space

a rotation U ·p of the point p with the matrix U can be expressed
as

q ? p̄ ?q−1 in quaternion space IH
(HAMILTON formula, C∼ IR2, IH∼ IR4)

where p̄ = (0,p) is the canonical quaternion of the point p

and q = (sin(ϕ/2),cos(ϕ/2)u) is the rotation quaternion
(with u ∈ IR3 being the axis and ϕ the angle of rotation)

instead of U with 9 constraint variables
we have u and ϕ , i.e., 4 unconstraint variables
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Matching Algorithms

1 maximal clique detection within the graph of compatible distances
2 geometric hashing of the pattern
3 distance geometry
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Maximal clique detection

we generate a graph G = (V ,E) (graph of compatible
distances)

vertices vij ∈ V all pairs (pi ,sj)

edges e = (vij ,vkl) ∈ E , if d(pi ,pk )≈ d(sj ,sl)

search for maximum cliques in G
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Properties of Clique Detection

the problem is NP–complete
(however, we search only for cliques of size ≤ k )

fast algorithms need adjacency matrices

if n = |S|= 5000 and k = |P|= 100 we need 30 GByte
(counting only one bit per edge)

SSIA-OSM Dr. Arno Formella 59 / 195



Geometric hashing

preprocessing of the search space
let’s describe the two–dimensional case

we align each pair (si ,sj )
with si at the origin and sj in direction x
we insert some information for each other point sk ∈ S
in a hashtable defined on a grid over S
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Example: geometric hashing
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Searching with geometric hashing

we simulate an insertion of the points of P into the hashtable

but we count only the non–empty entries

many votes reveal candidates for partial alignments

e.g., if we encounter a pair (pi ,pj) such that
for each other point of the pattern there is a non–empty cell in the
hashtable
we have found a perfect candidate
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Properties of geometric hashing

grid size must be selected beforehand

preprocessing time O(nd+1)

searching time O(kd+1)

works only for rigid motion transformations
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Distance geometry

we represent both sets S and P as distance graphs

the vertices of the graphs are the points of the sets

the edges of the graphs hold the distances between the
corresponding vertices

e.g., GP = (P,P×P) complete graph

SSIA-OSM Dr. Arno Formella 64 / 195



The ideas behind psm

we define adequate distance graphs GP and GS

we search for subgraphs G′S of GS that are congruent to the
graph GP

(allowing certain tolerances)

we optimally align GP with the subgraphs of G′S
we select the best one among all hits

we extend the search to work with subgraphs of GP as well

we select a best subgraph as final solution
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The four main steps of psm

construction of the graphs
with: exploitation of locallity properties

search of subgraphs
with: sophisticated backtracking

alignment
with: minimization of cost functions

search of partial patterns
with: reactive tabu search
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Construction of the graphs

let us assume that the pattern P is small

we construct GP as the complete graph

we generate a dictionary D
(ordered data structure)
that contains all distances (intervals) between points in P

we consider an edge between two vertices in GS

if the distance is present in the dictionary D

SSIA-OSM Dr. Arno Formella 67 / 195



Construction of the dictionary

let dij = d(pi ,pj) be the distance between two points of P

the dictionary will contain the interval

[ (1− ε) ·dij , (1 + ε)/(1− ε) ·dij ] ∈ D

where 0≤ ε < 1 is an appropriate tolerance

the upper limit can be simplified to (1 + ε)
(but we loose the symmetry)

we can join intervals in the dictionary D if they intersect
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Construction of the graphs that way

GP GS
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Fast construction of the graphs

we construct GP as a connected (and rigid) graph
mantaining only the short edges

we order the points of S previously in a grid of size similar to the
largest of the intervals
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Construction of the graphs that way

GP GS
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Matching

let us assume (at the beginning) that GP is a complete graph

we order the points of GP according to any order e.g.
(p0, . . . ,pk−1)

we apply a backtracking algorithm
that tries to encounter for earch pi a partner si

following the established ordering

hence:
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Backtracking for the search

let us assume that we already found a subgraph Gs0,...,si

where the graph Gp0,...,pi can be matched
we look for candidates si+1 for the next point pi+1

that must be neighbors of the point si within GS

that must not be matched already and
that have similar distances to the sj (j ≤ i) as the pi+1 to the pj

(j ≤ i)

while there is a candidate we advance with i

if there are no more candidates for si+1, si cannot be a partner
for pi neither (i.e.: backtracking)
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Termination of the algorithm

the algorithm informs each time
a candidate for for pk−1 has been found
the algorithm terminates when

there are no more candidates for p0 or
the first solution has been found
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Optimizations of the basic algorithm

reduction of the edges in GP

implies: reduction of the edges in GS

good ordering of the pi

implies: reduction of the number of candidates

consideration of the type of point (e.g. element type of the atom)
implies: reduction of the number of candidates

all heuristics imply:
the backtracking advances faster
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Search for partial alignments

find the subset of the points of the pattern that can be matched
best to some points in the search space

NP–complete

there are |P(P)|= 2k possibilities to choose a subset
we apply:

genetic algorithm
reactive tabu search

SSIA-OSM Dr. Arno Formella 76 / 195



Genetic Algorithm

maintain graph GS as complete graph

genome: sequence of bits indicating if a point belongs to the
actual pattern or not

crossover: two point crossover

mutation: flip

selection: roulette wheel

cost function: distance and size of alignment
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Termination of the GA

it is not that easy

once the first solution has been found

once a sufficently good solution has been found

after a certain number of iterations

once diversity of population is too low
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Problems with GA

GS must be a complete graph
You know a crossover operation for non–complete graphs?

more precisely:
we need a crossover (and mutation) operation that maintains a
specific property of the graphs (e.g., connectivity, rigidness)

or some new idea...
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Reactive Tabu Search

we start with an admissible solution

we search for possibilities to improve the current solution

if we can: we choose one randomly
if we cannot:

we search for possibilities to reduce the current solution
if we can: we again try improvements
if we cannot: we jump to another admissible solution

SSIA-OSM Dr. Arno Formella 80 / 195



The Tabu criterion

we avoid repetitive movements taking advantage of a memory
that stores intermediate solutions

i.e.: we mark certain movements as tabu for a certain number of
iterations

reactive means: we adapt the tabu period dynamically
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Quality of a partial alignment

evaluation of the cost of a solution:
number of aligned points plus quality of the alignment

remember: quality Q ∈]0,1], but we will use Q ≥ threshold

hence, maximal quality: |P|+ 1
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Reactive Tabu Search for psm

representation of the problem:
sets of indices of the matched points

search for candidates to improve (add):
(rigidly) connected neighbors within graph GS

search for candidates to reduce (drop):
any point of the current solution that mantains the graph GS

connected (and rigid)
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When do we terminate?

not that simple

once we found a sufficiently good solution

once we have run a certain number of iterations
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Search for the largest common pattern

P S
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Search for the largest common pattern

p/P p/S
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Search for the largest common pattern

s/P s/S
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Search for pattern with deformation

instead of the complete graph use a connected sparse graph

parts of the graph could be rigid

the graph may specify hinges or torsion axis
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psm

command line tool with configuration file

GUI

web–site to perform searches
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Possible extensions

enumerate more rigorously all locations
(up to now we have concentrated on the best solution)

extend the properties of the graphs defining deformations of the
pattern (e.g. torsion of parts, restriction of angles)

allow local tolerances (e.g. per edge), especially with
preknowledge of the biochemical properties

improve heuristics with statistical analysis of distributions of
distances (look for the unusual first)

improve the user interface

more applications
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No free lunch theorem
theory

Basically states:

The performance of all optimization algorithms amortized over all
objective functions is always equal (in discrete spaces).

With consequence: no algorithm can outperform (in general)
exhaustive search (or even random search).
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No free lunch theorem
reality

Fortunely, we are not interested in optimizing some function, rather we
like to optimize a specific one, i.e., an optimization algorithm is only
useful in his field (because necessarily there are fields where its
performance is very poor).
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optimUMTS

optimUMTS

Optimization of wireless UMTS networks
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Joint work with

Fernando Aguado
Departamento de Teoría de la Señal
Universidad de Vigo

Luis Mendo
Universidad Politécnica de Madrid
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Objectives

given a set of possible nodes B (base stations)

find optimal subset

to guarantee certain services (bandwidth)

to an estimated user distribution
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Principal algorithm
evolutionary and exact

LOAD

GENERATE

COMPUTE
ASSIGNMENT

Downlink
Uplink

static user distribution
path loss
UMTS settings

terrain data
node B locations

traffic description

best set B−nodes best set B−nodes
assignment

GA HBB
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Cartography of Madrid
input data
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Calculation of attenuation matrix α

indirect input data

simple logarithmic decay

L(m,k) = 100,1·(32,2+35,1·log(d(m,k)))

α(m,k) =
Geff(m) ·Geff(k)

L(m,k)

simplied Xia model

mixed model: close—Xia, far—simple
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Coverage around a node B
computed input data
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Traffic distribution
stochastic input data

static distribution

grid of estimated user with activation percentage

polygons with Poisson process per service

uniform distibution everywhere or only on streets
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Calculation of SIR
objective function, part I

uplink SIR γUL:

γUL(m,k) = (Eb/N0)UL ·b0(k)/B0

downlink SIR γDL:

γDL(m,k) = (Eb/N0)DL ·b0(k)/B0
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Calculation of noise
objective function, part II

uplink noise NT (m) at transmitter m:

F(m) = 100,1·NF (m)

N(m) = kB ·Tamb ·B0 ·F(m)

downlink noise NR(k) at receiver k :

F(k) = 100,1·NF (k)

N(k) = kB ·Tamb ·B0 ·F(k)
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Calculation of power (Hanly and Mendo)
objective function, part IVa, iterative method

initial power P0(k) for receiver k :

t0(m,k) =
γUL(m,k)

α(m,k)
·N(m) P0(k) = m«ın

m
{t(m,k)}

power Pi(k) for receiver k in iteration i :

si = Pi−1 ·α(m)

ti(m,k) =
γUL(m,k)

α(m,k)
· ((si −Pi−1(k) ·α(m,k)) ·a(k) + N(m))

Pi(k) = m«ın
m
{ti(m,k)}
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Termination criteria for iteration
objective function, part IVb, iterative method

∃k with P(k) > Pmax(k) =⇒ no assignment

i > Imax =⇒ no assignment

m«ax
k

{
Pi(k)

Pi−1(k)
,
Pi−1(k)

Pi(k)

}
≤∆ =⇒ assignment possible
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Calculation of assignment
objective function, part V

A(k) = m with t(m,k) = m«ın
m
{t(m,k)}

P(k) = m«ın
m
{t(m,k)}
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Validation of assignment
objective function, part VI

uplink:

Pmin(k) ≤ P(k)≤ Pmax(k)
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Direct solution
objective function, part VII

downlink:

β (n,k ,m) =

{
ρ(m,k) if m = n
1 otherwise

calculation of SSIR γ̃ :

γ̃(m,k) =
γDL(m,k)

1 + ρ(m,k) · γDL(m,k)
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System to solve for transmitter power calculation
objective function, part VIII

H(m,n) = δm,n− ∑
k∈A −1(m)

α(n,k) ·β (n,k ,m) · γ̃(m,k)

α(m,k)

ν(m) = Pplt(m) + ∑
k∈A −1(m)

γ̃(m,k) ·N(k)

α(m,k)

H ·T = ν
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Validation of power restrictions
restrictions I

validation of maximum power of transmitter m:

0 < T (m)≤ Tmax(m)
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Validation of power restrictions
restrictions II

calculation of downlink power of receiver k :

P(k) =
γ̃(m,k)

α(A(k),k)

(
M

∑
m=1

α(m,k) ·β (m,k ,A(k)) ·T (m) + N(k)

)

validation of transmitter maximum channel power:

P(k) ≤ Pchn
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Optimization with heuristic backtracking
exact method

Observation:

if there is no assignment with certain m nodes B

then there is no assignment with less nodes B

hence

start with all nodes B

eliminate nodes B til optimum found with heuristic backtracking

SSIA-OSM Dr. Arno Formella 111 / 195



Termination with heuristic backtracking

stop if stagnation occurs
(if within a subtree all minimum solutions are at the same depth)

finds optimum solution
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Heuristics
how to be fast at the beginning

ordering of nodes B plays an important role in finding fast good
solutions

reorder nodes B for backtracking according to heuristics

for instance: eccentricity, random, number of initial connections,
etc.
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Optimization with genetic algorithm (GA)
evolutionary method

steady-state incremental evolution
(in each iteration two new decendents are generated)

selection: roulette wheel

mutation: flip

crossover: two–point–cyclic

quality: number of nodes B plus power as tiebreak
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Genom generation I

matrix representation of nodes B

exploiting locality properties

using allele: usable, unusable, used, fixed
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Genom generation II
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Genom generation III

SSIA-OSM Dr. Arno Formella 117 / 195



Crossover I
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Crossover II
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Evolution
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Assignment and heuristic branch result
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GA results with and without downlink
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Further research and implementations

use of MonteCarlo method

to find best subset of nodes B

for several user distributions

i.e., find best subset to satisfy different scenarios
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shaprox

Approximation of point sets with shapes
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Informal problem description

given a set of points in the plane

construct a geometric figure interpolating the sample points

that reasonably captures the shape of the point set
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Applications

pattern recognition

object definition in geographic information systems

CAD/CAM services

vectorization tasks

curve reconstruction in image analysis

single–computation pose estimation

geometric indexing into pictorial databases

shape tracking etc.
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Example
point set
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Example
initial shapes
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Example
adapted shapes
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Approximation task

Three steps:

clustering of the points to identify the individual parts of a set of
shapes,

generating of an initial guess of the individual shapes,

adapting the individual shapes to the underlying point set
according to some distance metric.
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Brain storming

distances, metrics, optimization, local and global
minima, discrete–continuous, partially plain functions,
multi–objetive optimization, local decisions,
multi–scale, simplification, VORONOI–diagram,
DELAUNAY–diagram, graph analysis, similarity
detection, classification (with and without
supervision), filtering
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Polygonal approximation
type of clustering

Given a set of points of a plane curve,

construct a polygonal structure

interpolating the sample points

that reasonably captures the shape of the point set.
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Three approaches for polygonal approximation

α–shapes

crust

curve approximation
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Alpha–shapes
application

The algorithm is able to detect

the outer boundary of a set of points

which covers more or less evenly distributed the interior of a
shape.
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Alpha–shapes
algorithm

Compute the DELAUNAY triangulation of the point set.

Eliminate all triangles of the resulting graph which have a radius
larger than α times the minimum radius.

The final shape is given by the outer edges of the remaining
graph.
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VORONOI–diagram
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VORONOI–diagram with more points
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DELAUNAY–diagram
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Alpha–shapes
Example
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Alpha–shapes
short comings

Need of suitable alpha.

Alpha is constant over the entire point set.

Interior points needed.
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CRUST
application

The algorithm is able to reconstruct

a curve

that is sampled sufficiently dense

especially smooth curves, i.e., possibly many component curves
without branches, endpoints, or self–intersections.
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CRUST
algorithm

The crust

is the set of edges

selected from the Delaunay triangulation of the initial point set

extended by its Voronoi points

where both endpoints of the edges belong to the initial set.
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CRUST
Example
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CRUST
Example
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Curve reconstruction
algorithm

Computes the GABRIEL graph as a subgraph of the Delaunay
graph

(an edge between two input points belongs to the Gabriel graph if
a disk with this edge as diameter does not contain any other input
point).

Eliminate the edges which do not fulfill the local granularity
property,

i.e., at each point only the two shortest edges are maintained.
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Curve reconstruction
application

The method works well if there exists a regular interpolant,

that is, a polygonal closed curve such that the local granularity,

defined as minimum distance to an input point,

at each point of the curve is strictly smaller

than the local thickness at that point,

defined as the distance to the medial axis of the shape.
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Skeleton
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Skeleton
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Simplification problem
objective

Given polygonal chain (or polygon) P (with n vertices),

approximate P by another one Q whose vertices are a subset of
k vertices of P.
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Simplification problem
two variants

min–#–problem: minimize the number of vertices of an
approximating polygonal chain (or closed polygon) with the error
within a given bound;

min–ε–problem: minimize the error of an approximating polygonal
chain (or closed polygon) consisting of a given number of
vertices.
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Simplification problem
solutions

Both problems can be solved in optimal time O(n2).

There exist near–optimal algorithms for solving the
min–#–problem for the Euclidean distance which for practical
problems outperform the optimal algorithms.

There exists a genetic algorithm to cope with the min–#–problem
which found near optimal solutions in the presented experiments.
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Approximation problem
objective

Given polygonal chain (or polygon) P (with n vertices),

approximate P by another one Q whose k vertices can be placed
arbitrarily in the plane.

min–#–problem: minimize the number of vertices with the error
within a given bound;

min–ε–problem: minimize the error consisting of a given number
of vertices.
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Approximation problem
solutions

There exists an algorithm that approximates the point set with a
set of individual lines.

Joining the lines is problematic in certain cases.

There exists an algorithm that approximates with a linked chain
whenever the input polyline is monotonic (runtime O(nk )).

There exists an approximation version of this algorithm which
runs much faster (no implemention known).
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shaprox
shape description

A shape S is defined by a number of points and certain parameters:

line: a point L ∈ IR2 and an angle ϕ ∈ IR;

circumference: a center point C ∈ IR2 and a radius ρ ∈ IR;

set of circumferences: set of pairs of center points and
corresponding radii, i.e., (C ,R)⊂ IR2× IR;

polyline or polygon: an ordered set of corner points
Q = {Q1,Q2, . . . ,Qk},Qj ∈ IR2, j = 1, . . . ,k , where the only
difference between the two shapes is that for a polygon the last
and first corner are connected;

rounded box: a line segment defined by two points Q1,Q2 ∈ IR2,
an aspect ratio α ∈ IR, and a corner radius ρ ∈ IR.

SSIA-OSM Dr. Arno Formella 154 / 195



shaprox
distance functions: point—shape I

line
δL2(Pi ,S ) =

∣∣Det(Pi −L,(cosϕ,sinϕ)T )
∣∣

circumference

δL2(Pi ,S ) = |‖Pi −C‖−ρ|

set of circumferences

δL2(Pi ,S ) = m«ın
(Cj ,ρj)∈(C ,R)

|‖Pi −Cj‖−ρj |

SSIA-OSM Dr. Arno Formella 155 / 195



shaprox
distance functions: point—shape II

polyline or polygon, first we need the distance for a segment
QQj = Qj+1−Qj :

δL2(Pi ,QQj) =
‖Pi −Qj‖ if (Pi −Qj)

T QQj < 0
‖Pi −Qj+1‖ if (Pi −Qj+1)T QQj > 0∣∣∣Det(QQj ,Pi−Qj)

‖QQj‖

∣∣∣ otherwise

and obtain for a polyline or polygon

δL2(Pi ,S ) = m«ın
Qj∈Q

δL2(Pi ,QQj)

where for a polyline the index j runs from 1, . . . ,k−1 and for a
polygon from 1, . . . ,k with Qk+1 = Q1.
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shaprox
distance functions: point—shape III

rounded box

δL2(Pi ,S ) =

∣∣∣∣ m«ın
j=1,...,4

δL2(Pi ,QQj)±ρ

∣∣∣∣
where Q3 = Q2 + α Q>12 and Q4 = Q1 + α Q>12 being Q>12 the left
turned perpendicular vector to Q2−Q1 of same length. +ρ is
taken when the point Pi lies inside the rectangular box through
Q1, . . . ,Q4, and −ρ when Pi lies outside.
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shaprox
distance functions: non–euclidean

vertical distance to a line:

δV (Pi ,S ) =
∣∣P2

i −L2− (P1
i −L1) · sinϕ/cosϕ

∣∣
length of the segments could have an influence as a weight

δwL2(Pi ,QQj) =
∣∣Det(QQj ,Pi −Qj)

∣∣
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shaprox
distance functions: point set—shape

RMS

δRMS,L2(P,S ) =

√
1
l ∑

Pi∈P
δL2(Pi ,S )2

AVG

δAVG,L2(P,S ) =
1
l ∑

Pi∈P
δL2(Pi ,S )

MAX
δMAX,L2(P,S ) = m«ax

Pi∈P
δL2(Pi ,S )

or δRMS,V (P,S ) or δAVG,L1(P,S ), etc
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shaprox
algorithm for local search

Algorithm of RODRÍGUEZ/GARCÍA–PALOMARES

derivative–free minimization method

proved convergence for either locally strictly differentiable or
non–smooth locally convex functions.
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shaprox
Subsidiary objective

Til now concentrated on the minimization of a single function.

However, in our optimization problem, it can happen that there is
no change in the value of the distance function although the
shape is modified.
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shaprox
Example: Subsidiary objective
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shaprox
Subsidiary objective: idea

Minimize perimeter as well.
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shaprox
Subsidiary objective: possible solution

Formulate a convex combination of all objectives,

i.e., optimize the single–objective function

f (x) = β1f1(x) + β2f2(x) + · · ·+ βl fl(x)

where the βj > 0, for j = 1, . . . , l , are strictly positive weights,

fj(·) : IRn −→ IR are the individual objective functions.
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shaprox
Subsidiary objective: short coming of possible solution

Explores the Pareto front defined by the weights βj ,

it might be difficult to find weights such that the encountered
minimum is sufficiently close to the minimum considering only the
principal objective f1(·).
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shaprox
Example: convex combination as objective function
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shaprox
Subsidiary objective: better solution

modify the comparison f (z)≤ f (x)− τ2 (in the local search
algorithm)

with the following iteratively defined comparison function for l
objectives:

[f1(z), . . . , fl(z)]≤τ2 [f1(x), . . . , fl(x)]⇐⇒
∀j = 1, . . . , l : fj(z)≤ fj(x)− τ

2 or

(j < l and fj(z)≤ fj(x) and fj+1(z)≤ fj+1(x)− τ
2)
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shaprox
Example
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NP–Completeness and non–convexity of the objective
function
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shaprox
Examples: wedge
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shaprox
Examples: simple polygon
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shaprox
Examples: convex hull
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shaprox
Examples: circumferences
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shaprox
Examples: influence of metrics
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shaprox
Examples: completing shapes
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shaprox
Examples: rounded rectangle
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shaprox
Examples: complex polygon
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Evolutive methods
based on natural fenomena

simulated anealing

cristalizaton of materials

evolution (mutation, recombination, selection)

competitive/colaborative systems

social interactions
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Evolutive methods
with meta heuristics

(reactive) tabú search (since 1986)

random search (since 196X)

simulated anealing (since 196X)

genetic algorithms (since 1975)

genetic programming

(neural networks)

ant colony optimization (since 1992)

particle swarm optimization (since 1995)

guided local search (since 1997)

iterated local search (since 1999)

variable neighborhood search (since 1999)
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Evolutive methods
paradigms

work with populations of individuals
(only one individual and a memory...)

there are modification processes
(mutation, modification, reproduction)

performance of the individuals in the environment based on a
fitness which usually is the objective function (but not necessarily)

decisions are drawn probabilistically
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Evolutive methods
genetic algorithms

one distinguishes genotype (codification) and fenotype

there exists a bijection between genotype and fenotype

modifications (mutation and crossover) is done over the
genotypes

the fitness is evaluated over the fenotypes

mutation (which one?), recombination (types?), selection (types?)
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Evolutive methods
evolutive programming

there exists only the fenotype (with its codification)

modification (mutation) is realized over the fenotypes of copies

the fitness is evaluated over the fenotypes

mutation (types?), selection (types?)
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Evolutive methods
evolutive strategies

an amplification of evolutive programming

each individual maintains parameters that guide the mutations

these parameters are modified in the same way as the proper
fenotypes

mutation (types?), selection (types?)
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Evolutive methods
genetic programming

the codification of the fenotype is a program

the programs are modified with adecuate operations

mutation (types?), selection (types?)

recent example (André Falcão, Residue fragment programs for
enzyme classification, Proceedings BKDB2005, pp.24–28, 2005).
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Evolutive methods
differential evolution

the codification of the fenotype is a vector of characteristics

the vector of an individual is modified with the differences to other
vectors (individuals)

modifications (types?), selection (types?)
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Evolutive methods
swarm intelligence

the individuals of the population interact in a social way

the decisions of each individual depend on the own wishes and
the information available from the others

ant colonies

particle swarms
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Evolutive methods
ant colonies

the individuals leave information (feromonas) in the search space

the decisions are based on individual information and on the
feromonas encountered

the information (feromonas) is volatile

the feromonas or statistical behavior of the individuals define the
solution
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Particle swarm optimization
characteristics

simple to describe

simple to implement

few parameters to adjust

usually small population are used

the number of objective function evaluations is usually small

usually is very fast

premature convergence occurs whenever all individuals are located in
a small area of the search space
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Particle swarm optimization
some details

each individual communicates with its neighborhood
(usually, the neighborhoods overlap)

and maintains local information
(best solutions viewn til now, search direction, etc.)

in most cases, the neighborhood is fixed

the local information is modified with the help of the information
gathered in the neighborhood
(or just from the best neighbor)

local changes are confined to avoid explosions
(dramatic changes)

the method is able to solve discrete problems
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Particle swarm optimization
velocity actualization

vi = ξ (vi + U[0,ϕ1](pi − xi) + U[0,ϕ2](pg− xi))

xi = xi + vi

con

xi vector of current positions

vi vector of current directions

pi best local position vector

pg best position vector of group (neighborhood)

ϕ1 = 2,05

ϕ2 = 2,05

ξ = 0,729
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Particle swarm optimization
versions

binary version: the variables are interpreted as binary values
according to a distribution of threshold

discret version: the variables are interpreted as integer values (for
instance with simple rounding)

dynamic version: the search space is reinitialized, the local variables
are reset, for instance: pi = xi or re-evaluate pi and
decide between pi ans xi .
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Particle swarm optimization
convergence

the individuals should exhibit certain diversity

one needs a similarity measure

diversity can be forced dynamically adapting the parameters

one might use lack of diversity as stopping condition
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multi–objective optimization
Pareto

there is more than one independent objective function

Pareto optimal (global): every other component for all other
solutions is worse (or equal)
(other names are: efficient points, dominant points, non-interior
points)

Pareto optimal (local): every other component for all other
solutions in a local neighborhood is worse (or equal)

the Pareto frontier describes the trade-off between the different
objectives
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Multi–objective
techniques for a solution

convex combination of the objectives
(to obtain the Pareto frontier one has to explore the coefficient
space)

homotopic techniques, i.e., compute the entire Pareto frontier
(works in most cases just for two objectives)

goal programming, i.e., fix values for all objectives and minimize
the distance of all objectives to the predefined goals (according to
some convenient distance metric)

priority optimization, i.e., fix thresholds for all but one objective
beforehand and optimize above the threshold according the most
important one

priorization (multi-level) programming, i.e., optimize according to
a predefined ordering of the objectives.
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Multi–objective optimization
with evolutionary methods

evolutionary methods can approximate the Pareto frontier in
parallel (with the help of the diversity among the individuals)

for instance particle swarm systems varying the weights of a
convex combination periodically during the iterations
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