Intelligent and Adaptable Software Systems Advanced Algorithms: Optimization and Search Methods

Dr. Arno Formella

Computer Science Department University of Vigo

11/12

1/23

Advanced Algorithms: Optimization and Search Methods I

Dr. Arno Formella (University of Vigo)

course notes

• Homepage:

http://trevinca.ei.uvigo.es/~formella/doc/ssia10

whiteboard (illustrations, notations, ideas for proofs, algorithms etc.)

 very short introduction to certain aspects related to optimization and search methods, and some applications class room hours

Optimization and Search Methods Fridays, 16:00–18:00

23.09.	30.09.	07.10.	14.10.	21.10.
class	class	lab	class	lab
etc				

イロト イ理ト イヨト イヨト

class room hours

- Dr. Fernando Diáz Gómez office hours: fdiaz@infor.uva.es
- Dr. Arno Formella office hours: Tuesdays, 9:30-13:30 and 17-19

< ∃ ►

OUR 519.8.15, OUR 519.8/23, OUR 519.8/24, OUR 519.8/46, OUR 519/17, OUR 519/20

イロト イ団ト イヨト イヨト

- browse through the web pages provided in the following slides
- sort the information provided into the categories of optimization methods as mentioned below
- find a web service that allows you to compute the derivation of a function
- use the NEOS-server to find the minimum of a function for some (different) values of the parameters

- form a group with at most one other student
- Select in accordance with Prof. Arno Formella one of the proposed algorithms on the next slide
- elaborate a not too short and not too long article (10 to 20 pages) about the algorithm, including at least the aspects stated on the next but one slide.

- Nelder Mead algorithm
- Newton Raphson
- Rodríquez García-Palomares algorithm
- Levenberg Marquardt algorithm
- great deluge algorithm
- local unimodel sampling

your article should treat the following issues

- description of the algorithm
- main field of application
- advantages and disadvantages compared to other algorithms
- available software/implementations
- critical discussion of their APIs
- references on the algorithm and its applications

(working in september 2010)

- Rui Mendes. Population topologies and their influence in particle swarm performance. PhD Thesis, Universidad de Minho, 2004. http://www.di.uminho.pt/~rcm/
- http://www.stanford.edu/~boyd/index.html Stephen P. Boyd, Stanford
- http://www-neos.mcs.anl.gov Online optimization project
- http://www.coin-or.org/index.html Operation research

- http://www.cs.sandia.gov/opt/survey global optimization
- http://iridia.ulb.ac.be/~mdorigo/ACO/ Ant colony optimization
- http://www.mat.univie.ac.at/~neum/glopt.html Global optimization
- http://plato.asu.edu/gom.html Continuous global optimization software
- http://www.swarmintelligence.org/index.php Particle swarm optimization

.

12/23

Optimizing means

- search for (at least) one solution
- which is different from other possible solutions
- in the sense of being (sufficiently) extreme
- within an ordering
- possibly taking into account certain restrictions
- (within a certain limit of computing time).

Example: hiking in a mountain ridge (with fog).

Problems which one wants to solve:

- minimizing cost
- maximizing earnings
- maximizing occupation
- minimizing energy
- minimizing resources

< 47 ▶

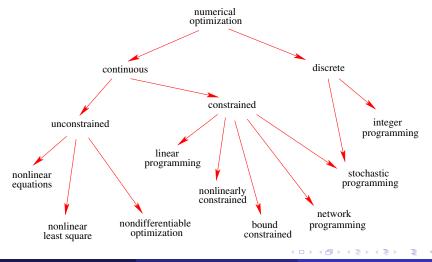
.

the search space and/or the objective function can be

- discrete or continous
- total or partial
- simple or complex, especially in respect to evaluation time
- explicite, implicite, experimental
- linear or non-linear
- convex or non-convex
- differentiable or non-differentiable
- constrained or unconstrained
- static or dynamic

The objective function must be confined.

- Minimization
- Maximization
- Obviously any maximization problem can be converted to a minimization problem.


A .

conditions

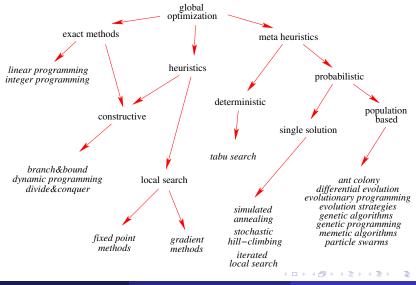
- restrictions
- feasable solution (feasibility problem)
- coding of the solutions

A (10) > A (10) > A (10)

(after NEOS server (almost), Argonne National Laboratory)

types

to be distinguished

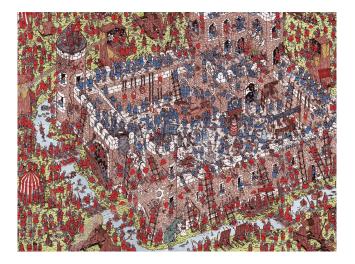

local optimization: usually one starts from an initial solution and stops when having found a local (close) minimum global optimization: one tries to find the best solution globally (among all possible solutions)

.

• The main problem of global optimization is: getting trapped in a local minimum (premature convergence)

Basic concepts

global optimization (incomplete intent)



approximate Point Set Match in 2D and 3D

An application where we need sophisticated search and optimization techniques.

A (10) > A (10) > A (10)

Dónde está Wally?

Dr. Arno Formella (University of Vigo)

। 11/12 23/23