Intelligent and Adaptable Software Systems

Advanced Algorithms: Graph Theory

Dr. Arno Formella

Computer Science Department University of Vigo

11/12

A D M A A A M M

- ∢ ∃ ▶

Advanced Algorithms: Graph Theory I

Dr. Arno Formella (University of Vigo)

11/12 2/21

course notes

• Homepage:

http://www.ei.uvigo.es/~formella/doc/ssial1

- almost everything will be accessible on our moodle-platform: http://postgrado.ei.uvigo.es/tadsi-online/login/index.php
- whiteboard illustrations (notations, ideas for proofs, algorithms)
- very short introduction to some specific aspects of graph theory and their applications

Graph Theory, WednesDay, 16:00–18:00

14.09.	21.09.	28.10.	05.10.	19.10.
(class)	(lab)	(Arno)	(Arno)	(Arno)
26.10.	02.11.	09.11.	16.11.	23.11.
(Arno)	(Arno)	(Marta)	(Marta)	(Marta)
30.11.	07.12.	19.12.	21.12.	11.01.
(Marta)	(Marta)	(Marta)	(Marta)	(??)
18.01.	25.01.			
eval	eval			

イロト イポト イヨト イヨ

office hours

- Dra. Marta Pérez Rodríguez office hours: ??, ??-??
- Dr. Arno Formella office hours: tuesdays, 10-13 and 17-20

< 注 → < 注

- Reinhard Diestel. Graph Theory. 3rd edition, Springer Verlag, 2005. ISBN 3-540-26183-4.
 Existe una versión electrónica entre-enlazada (no imprimible): http://diestel-graph-theory.com/index.html
- Thomas H. Cormen, Charles E. Leiseron, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms, Second Edition.* Especially Part VI. McGraw Hill, 2001. ISBN 0-262-03292-7.

(working in september 2011)

- http://www.graphtheory.com
- http://www.ericweisstein.com/encyclopedias/ books/GraphTheory.html
- http://mathworld.wolfram.com/Graph.html
- http://en.wikipedia.org/wiki/Graph_theory

- E - - E -

(working in september 2011)

- Gregorio Hernández Peñalver, Universidad Politécnica de Madrid, http://www.dma.fi.upm.es/docencia/segundociclo/ teorgraf (in Spanish)
- Steven C. Locke, Florida Atlantic University, http://www.math.fau.edu/locke/graphthe.htm (alphabetically ordered)

graph theory: study the material

graph programming libraries: analyze and use of programming tools and libraries that work with graphs (Leda, GraphBase, Boost, etc.)

graph visualization: analyze and use of tools to visualize graphs and the information they contain (OGDF, Graphviz, yED, etc.)

applications: search for applications that use graph algorithms or graphs as data structures (e.g., network planification, route optimization)

graphs can be found, e.g., in the following situations:

- street plans or maps
- networks (data, fluids, traffic etc.)
- transport systems
- chemical connexions in a large molecule
- neighborhood relations in a worldmap
- interference relations between antennas in a wireless communication system
- links between WWW pages
- closeness relation in arrangments

Hence, a graph is an abstract concept behind the representation of relations (edges) between entities (nodes or vertices)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Determine the order how to dress cloths.
- Is it possible to design a journey through a city that passes through every street exactly once?
- What is the shortest distance a postman must walk to visit (pass along) each street or the necessary ones at least once?

- How should we direct the street using one-direction signs such that it is still possible to drive from everywhere to everywhere?
- What are the necessary conditions to organize a group dance at a party such that the pairs consist of partners who knew each other beforehand?
- How should we place the chips on a board to minimize the interconnection length?
- Where should be place the firebrigades to shorten their maximum distances to any house?

Notations

basic issues

V
$[V]^r$
$E\subseteq [V]^2$
$v \in V$
$e = \{x, y\} \in E$
$\{x,y\} \iff: xy$
G = (V, E)
V(G), E(G)
$v \in G : \iff v \in V(G)$
$e \in G : \iff e \in E(G)$
V =: n
V = V(G) = G
E =: m
$ E = E(G) =\ G\ $

set of nodes or vertices set of subsets of V of size r set of edges vertex or node edge xy is edge graph vertices and edges of the graph G v is vertex of the graph G e is edge of the graph G number of vertices equivalent notations number of edges equivalent notations

(日) (同) (三) (三)

trivial over	if $ G = 0$ or $ G = 1$, the graph is trivial if $G = (V, E)$, G is a graph over V
incident	a vertex v is incident to an edge e , if $v \in e$
	an edge e is incident to a vertex v , if $v \in e$
adjacent	two vertices v and w are adjacent, if $\{v, w\} \in E$
	two edges e and f are adjacent, if $e \cap f \neq \emptyset$
connected	an edge connects its vertices
X-Y-edge	if $x \in X \subseteq V$ and $y \in Y \subseteq V$, xy is $X - Y$ -edge
E(X, Y)	set of $X - Y$ -edges

イロト イヨト イヨト イヨト

$$E(v) := E(v, V \setminus \{v\})$$
 set
 $N(v)$ set
 $d(v) := |E(v)| = |N(v)|$ det
 $d_G(v)$ det
 $\delta(G)$ mit
 $\Delta(G)$ mit
 $\Delta(G)$ mit
 $\epsilon(G) := 2|E|/|V|$ mit
 $\epsilon(G) := |E|/|V| = \frac{d(G)}{2}$ mit

set of edges incident to vset of vertices adjacent to v(neighbors) degree of vertex vdegree of vertex $v \in G$ minimum degree of the vertices in Gmaximum degree of the vertices in Gmean degree of the vertices en Gmean number of edges per vertex of G

$$\begin{array}{ll} G \setminus e & \text{graph} (V, E \setminus \{e\}) \\ G \setminus v & \text{graph} (V \setminus \{v\}, E \setminus E(v)) \\ G \setminus E' & \text{graph} (V, E \setminus E') \\ G \setminus V' & \text{graph} (V \setminus V', E \setminus E(V')) \end{array}$$

イロト イヨト イヨト イヨト

Vocabulary neighborhood

neighbor node	v is neighbor of w , if $vw \in E(v)$,
	i.e., if v and w are adjacent
neighbor edge	<i>e</i> is neighbor of <i>f</i> , if $e \cap f \neq \emptyset$
	i.e., <i>e</i> and <i>f</i> are incident to the same vertex
independent	vertices/edges non adjacent,
	a set of vertices (edges) mutually
	independent is an independent set
complete	a graph is complete,
	if all its vertices are neighbors
partition	the set of set $\{V_0,, V_{r-1}\}$
	is a partition of V ,
	if $V = \bigcup_i V_i$, $V_i \neq \emptyset$, and $\forall i \neq j : V_i \cap V_j = \emptyset$

 $\alpha(G)$ size of the largest independent set of vertices

・ロト ・ 四ト ・ ヨト ・ ヨト

digraph the edges are directed, i.e., instead of the sets $\{v, w\}$ we use pairs (v, w) or (w, v)i.e., $E \subseteq V \times V$ multigraph permits more than one edge between vertices pseudograph permits loops on vertices

.

A graph can be stored with three basic methods:

- adjacency matrix
 - square matrix, and in the simple case, binary (and symmetric if not digraph) that codes whether there exists an edge between vertices
 - space complexity $\Omega(n^2)$
- adjacency lists
 - list or array of vertices which contain in each entry a list to its adjacent vertices
 - space complexity $\Theta(n+m)$

hashtables

- list or array of vertices which contain in each entry a hashtable to its adjacent vertices
- space complexity $\Theta(n+m)$

What are the principal advantages and disadvantages of each method?

There are more data structures available which are useful to implement certain algorithms more efficiently (especially for planar graphs).