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Course organization
course notes

Homepage:
http://www.ei.uvigo.es/~formella/doc/ssia09

whiteboard illustrations (notations, ideas for proofs, algorithms)
very short introduction to certain aspects related to optimization
and search methods and some applications
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Course organization
class room hours

Optimization and Search Methods, Thursdays, 18:00–20:00

24.09. 01.10. 08.10. 15.10. 22.10.
class class lab class lab
29.10. 05.11. 12.11. 19.11. 26.11.
class ?? ?? ?? ??
03.12. 10.12. 17.12. 07.01. 14.01.

?? ?? ?? ?? ??

Dr. Arno Formella (University of Vigo) SSIA 09/09 4 / 89



Course organization
class room hours

Dr. Fernando Diáz Gómez
office hours: fdiaz@infor.uva.es
Dr. Arno Formella
office hours: Mondays, 11-14 and 17-20
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Bibliography
books

to be completed
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Your work
homework, lab hours, presentations

to be completed
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Bibliography I
links

(working in september 2009)

Rui Mendes. Population topologies and their influence in particle
swarm performance. PhD Thesis, Universidad de Minho, 2004.
http://www.di.uminho.pt/~rcm/

http://www-neos.mcs.anl.gov
Online optimization project

http://www.coin-or.org/index.html
Operation research

http://www.cs.sandia.gov/opt/survey
global optimization
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Bibliography II
links

http://iridia.ulb.ac.be/~mdorigo/ACO/
Ant colony optimization

http://www.mat.univie.ac.at/~neum/glopt.html
Global optimization

http://plato.asu.edu/gom.html
Continuous global optimization software

http://www.swarmintelligence.org/index.php
Particle swarm optimization
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Motivation
what is it?

Optimizing means

search for (at least) one solution
which is different from other possible solutions
in the sense of being (sufficiently) extreme
within an ordering
possibly taking into account certain restrictions
(within a certain limit of computing time).

Example: hiking in a mountain ridge (with fog).
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Motivation
examples

Problems which one wants to solve:

minimizing cost
maximizing earnings
maximizing occupation
minimizing energy
minimizing resources
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Basic concepts
observations

the search space and/or the objective function can be

discrete or continous
total or partial
simple or complex, especially in respect to evaluation time
explicite, implicite, experimental
differentiable or non–differentiable
static or dynamic

The objective function must be confined.
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Basic concepts
objective functions

Minimization
Maximization
Obviously any maximization problem can be converted to a
minimization problem.
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Basic concepts
conditions

restrictions
feasable solution (feasibility problem)
coding of the solutions
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Basic concepts
classification

(after NEOS server (almost), Argonne National Laboratory)

continuous discrete

constrained
bound

constrained
nonlinearly

programming
linear

least square
nonlinear

equations
nonlinear

unconstrained

constrained

programming
integer

optimization
numerical

nondifferentiable
optimization

network
programming

stochastic
programming
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Basic concepts
types

to be distinguished

local optimization: usually one starts from an initial solution and stops
when having found a local (close) minimum

global optimization: one tries to find the best solution globally (among
all possible solutions)
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Basic concepts
problems

The main problem of global optimization is: getting trapped in a
local minimum (premature convergence)
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Basic concepts
global optimization (incomplete intent)

optimization
global

population
based

linear programming
integer programming

dynamic programming
divide&conquer

branch&bound

fixed point
methods

gradient
methods

evolution strategies
genetic algorithms

genetic programming
memetic algorithms

particle swarms

evolutionary programming
differential evolution

ant colony

annealing
simulated

hill−climbing
stochastic

local search
iterated

exact methods

probabilistic

meta heuristics

heuristics

constructive

local search

deterministic

single solution

tabu search
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A real application
psm

approximate Point Set Match in 2D and 3D

An application where we need sophisticated search and optimization
techniques.
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¿Dónde está Wally?
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Motivation
psm

searching of patterns
(relatively small sets of two– or three–dimensional points),
within search spaces
(relatively large point sets)
comparing point sets
key words
geometric pattern matching, structure comparison, point set
matching, structural alignment, object recognition
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Joint work with

Thorsten Pöschel
some ideas from: Kristian Rother, Stefan Günther
Humboldt Universität—Charité Berlin
http://www.charite.de/bioinf/people.html

psm is one of the algorithms available at
http://farnsworth.charite.de/superimpose-web
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Search of a substructure in a protein
search space

Dr. Arno Formella (University of Vigo) SSIA 09/09 23 / 89



Search of a substructure in a protein
search pattern
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¿Dónde está Wally?
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Informal problem description

given a search space and
a search pattern,
find the location within the space
which represents best the pattern
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Extensions

find the best part of the pattern
which can be represented within the search space
allow certain types of deformation of the pattern
find similar parts within the same point set
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Formal problem description

search space:
S = {s0, s1, . . . , sn−1} ⊂ IRd , |S| = n
search pattern:
P = {p0,p1, . . . ,pk−1} ⊂ IRd , |P| = k ≤ n
dimension d = 2 or d = 3
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Search and alignment

the aligning process can be separated in two parts
find the matching points in the pattern and the search space
find the necessary transformation to move the pattern to its location

an approximate alignment must be qualified
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Matching

a matching is a function that assigns to each point of the search
pattern a different point of the search space
µ : P −→ S injective, i.e.,
if pi 6= pj then µ(pi) 6= µ(pj)

let’s write: µ(pi) = s′i and µ(P) = S′
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Transformations

transformations which maintain distances:
translation, rotation and reflection
transformations which maintain angles:
translation, rotation, reflection and scaling
deforming transformations:
shearing, projection, and others (local deformations)
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Congruent and similar transformations

rigid motion transformation
(euclidean transformation or congruent transformation)
only translation and rotation
similar transformation
rigid motion transformation with scaling
we may allow reflections as well (L–matches)
let T be a transformation (normally congruent)
we transform the pattern
let’s write: T (pi) = p′i and T (P) = P ′
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Alignment

a matching µ together with a transformation T is an alignment
(µ,T )

rigid motion transformation: congruent alignment
with scaling: similar alignment
with reflection: L–alignment
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One–dimensional example
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Distance of an alignment

let (µ,T ) be an alignment of P in S
we can measure the distances between transformed points of the
pattern and their partners in the search space
i.e., the distances

di = d(T (pi), µ(pi)) = d(p′i , s
′
i )

obviously, if di = 0 for all i
then the alignment is perfect
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Examples of different distances of an alignment

root mean square distance (RMS)

d =

√
1
n

∑
i

(p′i − s′i )
2

average distance (AVG)

d =
1
n

∑
i

|p′i − s′i |

maximum distance (MAX)

d = m«ax
i
|p′i − s′i |
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Quality of an alignment

there are many interesting distance measures
a distance d has its value in [0,∞[

we use the quality Q of an alignment Q = 1/(1 + d)

(other possibility: Q = exp(−d))
hence: Q = 1 perfect alignment, Q ∈]0,1]

and: Q < 1 approximate alignment
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Formal problem description

given a search space S, and
given a search pattern P
given a distance measure
find an alignment (µ,T ) of P in S
with minimum distance d (or maximum quality Q)
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Perfect congruent alignments

congruent alignments in IR3 (Boxer 1999):

O(n2,5 4
√

log∗ n + kn1,8(log∗ n)O(1)︸ ︷︷ ︸
output

log n)

for small k the first term is dominant
log∗ n is smallest l such that

22...2
}

l−veces ≥ n log∗ n = 5 =⇒ n ≈ 265000
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Perfect similar alignments

similar alignments in IR3 (Boxer 1999):

O(n3 + kn2,2︸ ︷︷ ︸
output

log n)

searching approximate alignments and/or partial alignments
is a much more complex problem
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Perfect alignments
ideas

choose one triangle, e.g. (p0,p1,p2), of P
search for all congruent triangles in S
(and their corresponding transformations)
verify the rest of the points of P
(after having applied the transformation)
the run time is not proportional to n3 (in case of congruence)
because we can enumerate the triangles of S in a sophisticated
manner and there are not as many possibilities
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Approximate alignments

as stated, we work in two steps
we search for adequate matchings µ
(according to a certain tolerance)
we calculate the optimal transformations T
(according to a certain distance measure)

we select the best alignment(s)
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Optimal Transformation

let S′ = µ(P) be a matching
let d be a distance measure
we look for the optimal rigid motion transformation T ,
(only translation and rotation), such that
d(T (P), µ(P)) = d(P ′,S′) is minimal
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Root mean square distance

d =

√
1
n

∑
i

d(p′i , s
′
i )

2

=

√
1
n

∑
i

(U · pi + t − s′i )
2

U 3x3 rotation matrix, i.e., orthonormal
t translation vector

Objective: find U and t such that d is minimal
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A little bit of math

we observe: t and U are independent

with the partial derivative of d according t

∂d
∂t

= 2 ·
∑

i

(U · pi + t − s′i ) = 2U
∑

i

pi + 2nt − 2
∑

i

s′i

we obtain

t = −U
1
n

∑
i

pi +
1
n

∑
i

s′i

= −U · pc + s′c

where pc and s′c are the centroids of both sets

Dr. Arno Formella (University of Vigo) SSIA 09/09 45 / 89



Optimal Rotation

with the above, d can be written as

d =

√
1
n

∑
i

(U · pi + t − s′i )
2

=

√
1
n

∑
i

(U · (pi − pc)− (s′i − s′c))2

where U is a matrix with restrictions (has to be orthonormal)
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Extremal points of functions with restrictions

one converts the problem with restrictions
with the help of LAGRANGE multiplies into
a problem without restrictions
which exhibits the same extremal points
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Let’s skip the details

basically, we calculate first and second derivative according to the
entries uij of U
we search for the extremal points
KABSCH algorithm 1976, 1978
open source code at my home page

Dr. Arno Formella (University of Vigo) SSIA 09/09 48 / 89



KABSCH algorithm

let S be the matrix of rows containing the s′i
let P be the matrix of rows containing the pi

we compute R = S · P>

we set A = [a0 a1 a2] with ak being the eigenvectors of R>R
we compute B = [‖Ra0‖ ‖Ra1‖ ‖Ra2‖]
and finally, we get U = B · A>
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Introduction of scaling

let us introduce a scaling value σ ∈ IR

d =

√
1
n

∑
i

(σU · (pi − pc)− (s′i − s′c))2

let p′′i = U · (pi − pc) be the translated and rotated point pi

let s′′i = s′i − s′c be the centralized point s′i

the solution for the optimal σ: σ =

∑
i

〈s′′i ,p′′i 〉∑
i

〈p′′i ,p′′i 〉
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Different distance measures—different alignments

AVG

MAX

RMS
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Optimal transformations for non–derivable distance
measures

if the function for d is not derivable, e.g., the average
we use a gradient free optimization method
(only with evaluations of the function)
recently developed iterative method that is guaranteed to
converge towards a local minimum
algorithm of RODRÍGUEZ/GARCÍA–PALOMARES (2002)

Dr. Arno Formella (University of Vigo) SSIA 09/09 52 / 89



Idea behind RODRIGUEZ/GARCIA–PALOMARES

let f (x) be the function to be minimized
we iterate contracting and expanding adequately parameters
hk > 0 and τ > 0 such that
f (xi+1) = f (xi ± hkdk ) ≤ f (xi)− τ2

where dk is a direction taken from a finite set of directions
(which depends on the point xi )
with τ −→ 0, xi converges to local optimum
(while there are no constraints)
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Rotation in quaternion space

a rotation U · p of the point p with the matrix U can be expressed
as
q ? p̄ ? q−1 in quaternion space IH
(HAMILTON formula, C ∼ IR2, IH ∼ IR4)
where p̄ = (0,p) is the canonical quaternion of the point p
and q = (sin(ϕ/2), cos(ϕ/2)u) is the rotation quaternion
(with u ∈ IR3 being the axis and ϕ the angle of rotation)
instead of U with 9 constraint variables
we have u and ϕ, i.e., 4 unconstraint variables
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Matching Algorithms

1 maximal clique detection within the graph of compatible distances
2 geometric hashing of the pattern
3 distance geometry
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Maximal clique detection

we generate a graph G = (V ,E) (graph of compatible distances)
vertices vij ∈ V all pairs (pi , sj)

edges e = (vij , vkl) ∈ E , if d(pi ,pk ) ≈ d(sj , sl)

search for maximum cliques in G
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Properties of Clique Detection

the problem is NP–complete
(however, we search only for cliques of size ≤ k )
fast algorithms need adjacency matrices
if n = |S| = 5000 and k = |P| = 100 we need 30 GByte
(counting only one bit per edge)
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Geometric hashing

preprocessing of the search space
let’s describe the two–dimensional case

we align each pair (si , sj )
with si at the origin and sj in direction x
we insert some information for each other point sk ∈ S
in a hashtable defined on a grid over S
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Example: geometric hashing
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Searching with geometric hashing

we simulate an insertion of the points of P into the hashtable
but we count only the non–empty entries
many votes reveal candidates for partial alignments
e.g., if we encounter a pair (pi ,pj) such that
for each other point of the pattern there is a non–empty cell in the
hashtable
we have found a perfect candidate
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Properties of geometric hashing

grid size must be selected beforehand
preprocessing time O(nd+1)

searching time O(kd+1)

works only for rigid motion transformations
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Distance geometry

we represent both sets S and P as distance graphs
the vertices of the graphs are the points of the sets
the edges of the graphs hold the distances between the
corresponding vertices
e.g., GP = (P,P × P) complete graph
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The ideas behind psm

we define adequate distance graphs GP and GS

we search for subgraphs G′S of GS that are congruent to the graph
GP
(allowing certain tolerances)
we optimally align GP with the subgraphs of G′S
we select the best one among all hits

we extend the search to work with subgraphs of GP as well
we select a best subgraph as final solution
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The four main steps of psm

construction of the graphs
with: exploitation of locallity properties
search of subgraphs
with: sophisticated backtracking
alignment
with: minimization of cost functions
search of partial patterns
with: reactive tabu search
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Construction of the graphs

let us assume that the pattern P is small
we construct GP as the complete graph
we generate a dictionary D
(ordered data structure)
that contains all distances (intervals) between points in P
we consider an edge between two vertices in GS
if the distance is present in the dictionary D
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Construction of the dictionary

let dij = d(pi ,pj) be the distance between two points of P
the dictionary will contain the interval

[ (1− ε) · dij , (1 + ε/(1− ε) · dij ] ∈ D

where 0 ≤ ε < 1 is an appropriate tolerance
the upper limit can be simplified to (1 + ε)
(but we loose the symmetry)
we can join intervals in the dictionary D if they intersect
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Construction of the graphs that way

GP GS
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Fast construction of the graphs

we construct GP as a connected (and rigid) graph
mantaining only the short edges
we order the points of S previously in a grid of size similar to the
largest of the intervals
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Construction of the graphs that way

GP GS
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Matching

let us assume (at the beginning) that GP is a complete graph
we order the points of GP according to any order e.g.
(p0, . . . ,pk−1)

we apply a backtracking algorithm
that tries to encounter for earch pi a partner si
following the established ordering
hence:
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Backtracking for the search

let us assume that we already found a subgraph Gs0,...,si

where the graph Gp0,...,pi can be matched
we look for candidates si+1 for the next point pi+1

that must be neighbors of the point si within GS
that must not be matched already and
that have similar distances to the sj (j ≤ i) as the pi+1 to the pj
(j ≤ i)

while there is a candidate we advance with i
if there are no more candidates for si+1, si cannot be a partner for
pi neither (i.e.: backtracking)
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Termination of the algorithm

the algorithm informs each time
a candidate for for pk−1 has been found
the algorithm terminates when

there are no more candidates for p0 or
the first solution has been found
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Optimizations of the basic algorithm

reduction of the edges in GP
implies: reduction of the edges in GS

good ordering of the pi
implies: reduction of the number of candidates
consideration of the type of point (e.g. element type of the atom)
implies: reduction of the number of candidates
all heuristics imply:
the backtracking advances faster
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Search for partial alignments

find the subset of the points of the pattern that can be matched
best to some points in the search space
NP–complete
there are |P(P)| = 2k possibilities to choose a subset
we apply:

genetic algorithm
reactive tabu search
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Genetic Algorithm

maintain graph GS as complete graph
genome: sequence of bits indicating si a point belongs to the
actual pattern or not
crossover: two point crossover
mutation: flip
selection: roulette wheel
cost function: distance and size of alignment
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Termination of the GA

it is not that easy
once the first solution has been found
once a sufficently good solution has been found
after a certain number of iterations
once diversity of population is too low
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Problems with GA

GS must be a complete graph
¿You know a crossover operation for non–complete graphs?
more precisely:
we need a crossover (and mutation) operation that maintains a
specific property of the graphs (e.g., connectivity, rigidness)
or some new idea...
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Reactive Tabu Search

we start with an admissible solution
we search for possibilities to improve the current solution
if we can: we choose one randomly
if we cannot:

we search for possibilities to reduce the current solution
if we can: we again try improvements
if we cannot: we jump to another admissible solution
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The Tabu criterion

we avoid repetitive movements taking advantage of a memory that
stores intermediate solutions
i.e.: we mark certain movements as tabu for a certain number of
iterations
reactive means: we adapt the tabu period dynamically
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Quality of a partial alignment

evaluation of the cost of a solution:
number of aligned points plus quality of the alignment
remember: quality Q ∈]0,1], but we will use Q ≥ threshold
hence, maximal quality: |P|+ 1
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Reactive Tabu Search for psm

representation of the problem:
sets of indices of the matched points
search for candidates to improve (add):
(rigidly) connected neighbors within graph GS

search for candidates to reduce (drop):
any point of the current solution that mantains the graph GS
connected (and rigid)
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¿When do we terminate?

not that simple
once we found a sufficiently good solution
once we have run a certain number of iterations
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Search for the largest common pattern

P S

Dr. Arno Formella (University of Vigo) SSIA 09/09 83 / 89



Search for the largest common pattern

p/P p/S
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Search for the largest common pattern

s/P s/S
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Search for pattern with deformation

instead of the complete graph use a connected sparse graph
parts of the graph could be rigid
the graph may specify hinges or torsion axis
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psm

command line tool with configuration file
GUI
web–site to perform searches

Dr. Arno Formella (University of Vigo) SSIA 09/09 87 / 89



Software
newer version

almost 11.000 specific lines of C++
uses the libraries:

mtl (matrix template library)
Gtkmm (graphical user interface)
own libraries
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Possible extensions

enumerate more rigorously all locations
(up to now we have concentrated on the best solution)
extend the properties of the graphs defining deformations of the
pattern (e.g. torsion of parts, restriction of angles)
allow local tolerances (e.g. per edge), especially with
preknowledge of the biochemical properties
improve heuristics with statistical analysis of distributions of
distances (look for the unusual first)
improve the user interface
more applications
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