Intelligent and Adaptable Software Systems Advanced Algorithms: Optimization and Search Methods

Dr. Arno Formella

Computer Science Department University of Vigo

09/09

Advanced Algorithms: Optimization and Search Methods I

Dr. Arno Formella (University of Vigo)

course notes

• Homepage:

http://www.ei.uvigo.es/~formella/doc/ssia09

- whiteboard illustrations (notations, ideas for proofs, algorithms)
- very short introduction to certain aspects related to optimization and search methods and some applications

Optimization and Search Methods, Thursdays, 18:00–20:00

24.09.	01.10.	08.10.	15.10.	22.10.
class	class	lab	class	lab
29.10.	05.11.	12.11.	19.11.	26.11.
class	??	??	??	??
03.12.	10.12.	17.12.	07.01.	14.01.
??	??	??	??	??

class room hours

- Dr. Fernando Diáz Gómez office hours: fdiaz@infor.uva.es
- Dr. Arno Formella office hours: Mondays, 11-14 and 17-20

• to be completed

2

イロト イヨト イヨト イヨト

• to be completed

イロト イヨト イヨト イヨト

(working in september 2009)

- Rui Mendes. Population topologies and their influence in particle swarm performance. PhD Thesis, Universidad de Minho, 2004. http://www.di.uminho.pt/~rcm/
- http://www-neos.mcs.anl.gov Online optimization project
- http://www.coin-or.org/index.html Operation research
- http://www.cs.sandia.gov/opt/survey global optimization

- http://iridia.ulb.ac.be/~mdorigo/ACO/ Ant colony optimization
- http://www.mat.univie.ac.at/~neum/glopt.html Global optimization
- http://plato.asu.edu/gom.html Continuous global optimization software
- http://www.swarmintelligence.org/index.php Particle swarm optimization

Optimizing means

- search for (at least) one solution
- which is different from other possible solutions
- in the sense of being (sufficiently) extreme
- within an ordering
- possibly taking into account certain restrictions
- (within a certain limit of computing time).

Example: hiking in a mountain ridge (with fog).

Problems which one wants to solve:

- minimizing cost
- maximizing earnings
- maximizing occupation
- minimizing energy
- minimizing resources

< 4 →

.

the search space and/or the objective function can be

- discrete or continous
- total or partial
- simple or complex, especially in respect to evaluation time
- explicite, implicite, experimental
- differentiable or non-differentiable
- static or dynamic

The objective function must be confined.

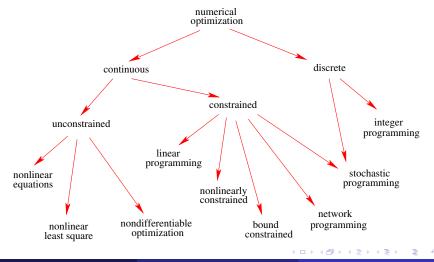
- Minimization
- Maximization
- Obviously any maximization problem can be converted to a minimization problem.

conditions

- restrictions
- feasable solution (feasibility problem)
- coding of the solutions

A (10) > A (10) > A (10)

(after NEOS server (almost), Argonne National Laboratory)



types

to be distinguished

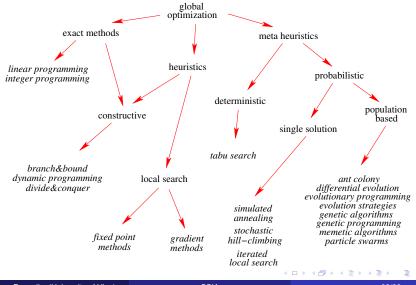
local optimization: usually one starts from an initial solution and stops when having found a local (close) minimum global optimization: one tries to find the best solution globally (among all possible solutions)

.

• The main problem of global optimization is: getting trapped in a local minimum (premature convergence)

Basic concepts

global optimization (incomplete intent)



Dr. Arno Formella (University of Vigo)

09/09 18 / 89

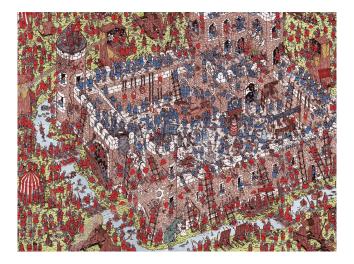
approximate Point Set Match in 2D and 3D

An application where we need sophisticated search and optimization techniques.

< 47 ▶

.

¿Dónde está Wally?



- searching of patterns

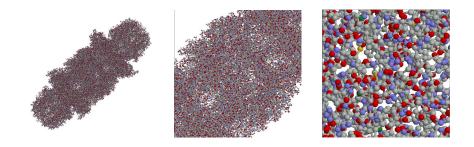
 (relatively small sets of two- or three-dimensional points),
 within search spaces
 (relatively large point sets)
- comparing point sets
- key words

geometric pattern matching, structure comparison, point set matching, structural alignment, object recognition

- Thorsten Pöschel
- some ideas from: Kristian Rother, Stefan Günther
- Humboldt Universität—Charité Berlin http://www.charite.de/bioinf/people.html
- psm is one of the algorithms available at http://farnsworth.charite.de/superimpose-web

Search of a substructure in a protein

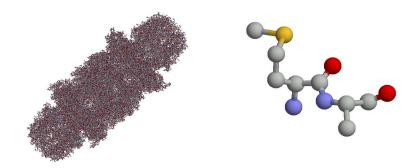
search space



< 🗇 🕨 < 🖃 >

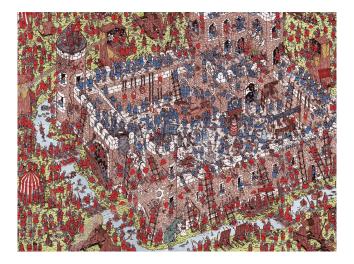
Search of a substructure in a protein

search pattern



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

¿Dónde está Wally?



- given a search space and
- a search pattern,
- find the location within the space which represents best the pattern

- find the best part of the pattern which can be represented within the search space
- allow certain types of deformation of the pattern
- find similar parts within the same point set

• search space:

$$S = \{s_0, s_1, \ldots, s_{n-1}\} \subset \mathbb{R}^d, \qquad |S| = n$$

search pattern:

$$P = \{p_0, p_1, \ldots, p_{k-1}\} \subset \mathbb{R}^d, \qquad |P| = k \leq n$$

• dimension d = 2 or d = 3

3 D 🖌 🕀 🖻

- the aligning process can be separated in two parts
 - find the matching points in the pattern and the search space
 - find the necessary transformation to move the pattern to its location
- an approximate alignment must be qualified

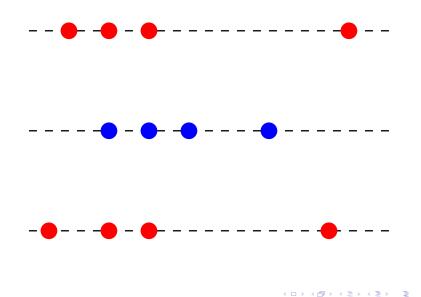
- a matching is a function that assigns to each point of the search pattern a different point of the search space
- $\mu: P \longrightarrow S$ injective, i.e.,
- if $p_i \neq p_j$ then $\mu(p_i) \neq \mu(p_j)$
- let's write: $\mu(p_i) = s'_i$ and $\mu(P) = S'$

- transformations which maintain distances: translation, rotation and reflection
- transformations which maintain angles: translation, rotation, reflection and scaling
- deforming transformations: shearing, projection, and others (local deformations)

- rigid motion transformation (euclidean transformation or congruent transformation) only translation and rotation
- similar transformation rigid motion transformation with scaling
- we may allow reflections as well (L-matches)
- let *T* be a transformation (normally congruent)
- we transform the pattern
- let's write: $T(p_i) = p'_i$ and T(P) = P'

- a matching μ together with a transformation *T* is an alignment (μ, *T*)
- rigid motion transformation: congruent alignment
- with scaling: similar alignment
- with reflection: L-alignment

< ∃ > < ∃



- let (μ, T) be an alignment of P in S
- we can measure the distances between transformed points of the pattern and their partners in the search space
- i.e., the distances

$$d_i = d(T(p_i), \mu(p_i)) = d(p'_i, s'_i)$$

• obviously, if $d_i = 0$ for all *i* then the alignment is perfect

Examples of different distances of an alignment

root mean square distance (RMS)

$$d = \sqrt{\frac{1}{n}\sum_{i}(p'_i - s'_i)^2}$$

average distance (AVG)

$$d=rac{1}{n}\sum_i |p_i'-s_i'|$$

maximum distance (MAX)

$$d = \max_i |p'_i - s'_i|$$

- there are many interesting distance measures
- a distance d has its value in $[0, \infty[$
- we use the quality Q of an alignment Q = 1/(1 + d)
- (other possibility: $Q = \exp(-d)$)
- hence: Q = 1 perfect alignment, $Q \in]0, 1]$
- and: Q < 1 approximate alignment

- given a search space S, and
- given a search pattern P
- given a distance measure
- find an alignment (µ, T) of P in S with minimum distance d (or maximum quality Q)

• congruent alignments in \mathbb{R}^3 (Boxer 1999):

$$O(n^{2,5}\sqrt[4]{\log^* n} + \underbrace{kn^{1,8}(\log^* n)^{O(1)}}_{\text{output}}\log n)$$

- for small k the first term is dominant
- log* n is smallest I such that

$$2^{2^{\dots^2}}$$
 $\left. \begin{array}{c} I - \operatorname{veces} \geq n \end{array} \right.$ $\log^* n = 5 \implies n \approx 2^{65000}$

• similar alignments in \mathbb{R}^3 (Boxer 1999):

$$O(n^3 + \underbrace{kn^{2,2}}_{\text{output}} \log n)$$

 searching approximate alignments and/or partial alignments is a much more complex problem ideas

- choose one triangle, e.g. (p_0, p_1, p_2) , of P
- search for all congruent triangles in S (and their corresponding transformations)
- verify the rest of the points of P (after having applied the transformation)
- the run time is not proportional to n^3 (in case of congruence) because we can enumerate the triangles of *S* in a sophisticated manner and there are not as many possibilities

as stated, we work in two steps

- we search for adequate matchings μ (according to a certain tolerance)
- we calculate the optimal transformations *T* (according to a certain distance measure)
- we select the best alignment(s)

- let $S' = \mu(P)$ be a matching
- let d be a distance measure
- we look for the optimal rigid motion transformation *T*, (only translation and rotation), such that
- $d(T(P), \mu(P)) = d(P', S')$ is minimal

Root mean square distance

$$d = \sqrt{\frac{1}{n} \sum_{i} d(p'_{i}, s'_{i})^{2}}$$
$$= \sqrt{\frac{1}{n} \sum_{i} (U \cdot p_{i} + t - s'_{i})^{2}}$$

- U 3x3 rotation matrix, i.e., orthonormal
- t translation vector

Objective: find U and t such that d is minimal

we observe: t and U are independent

• with the partial derivative of *d* according *t*

$$\frac{\partial d}{\partial t} = 2 \cdot \sum_{i} (U \cdot p_i + t - s'_i) = 2U \sum_{i} p_i + 2nt - 2 \sum_{i} s'_i$$

we obtain

$$t = -U\frac{1}{n}\sum_{i}p_{i} + \frac{1}{n}\sum_{i}s'_{i}$$
$$= -U \cdot p_{c} + s'_{c}$$

• where p_c and s'_c are the centroids of both sets

• with the above, *d* can be written as

$$d = \sqrt{\frac{1}{n} \sum_{i} (U \cdot p_{i} + t - s_{i}')^{2}} \\ = \sqrt{\frac{1}{n} \sum_{i} (U \cdot (p_{i} - p_{c}) - (s_{i}' - s_{c}'))^{2}}$$

• where *U* is a matrix with restrictions (has to be orthonormal)

★ ∃ > ★

- one converts the problem with restrictions
- with the help of LAGRANGE multiplies into
- a problem without restrictions
- which exhibits the same extremal points

- basically, we calculate first and second derivative according to the entries u_{ii} of U
- we search for the extremal points
- KABSCH algorithm 1976, 1978
- open source code at my home page

- let S be the matrix of rows containing the s[']_i
- let **P** be the matrix of rows containing the *p_i*
- we compute $\mathbf{R} = \mathbf{S} \cdot \mathbf{P}^{\top}$
- we set $\mathbf{A} = [a_0 \ a_1 \ a_2]$ with a_k being the eigenvectors of $\mathbf{R}^{\top}\mathbf{R}$
- we compute $\mathbf{B} = [\|\mathbf{R}a_0\| \|\mathbf{R}a_1\| \|\mathbf{R}a_2\|]$
- and finally, we get $U = \mathbf{B} \cdot \mathbf{A}^{\top}$

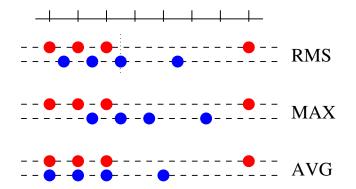
• let us introduce a scaling value $\sigma \in \mathbb{R}$

$$d = \sqrt{\frac{1}{n}\sum_{i}(\sigma U \cdot (p_i - p_c) - (s'_i - s'_c))^2}$$

• let $p''_i = U \cdot (p_i - p_c)$ be the translated and rotated point p_i • let $s''_i = s'_i - s'_c$ be the centralized point s'_i

- the solution for the optimal σ : $\sigma = \frac{\sum_{i} \langle s_i'', p_i'' \rangle}{\sum_{i} \langle p_i'', p_i'' \rangle}$

Different distance measures—different alignments



イロト イポト イヨト イヨト

- if the function for *d* is not derivable, e.g., the average
- we use a gradient free optimization method (only with evaluations of the function)
- recently developed iterative method that is guaranteed to converge towards a local minimum
- algorithm of RODRÍGUEZ/GARCÍA–PALOMARES (2002)

- let $f(\mathbf{x})$ be the function to be minimized
- we iterate contracting and expanding adequately parameters $h^k > 0$ and $\tau > 0$ such that

•
$$f(\mathbf{x}_{i+1}) = f(\mathbf{x}_i \pm h^k \mathbf{d}_k) \le f(\mathbf{x}_i) - \tau^2$$

- where d_k is a direction taken from a finite set of directions (which depends on the point x_i)
- with τ → 0, x_i converges to local optimum (while there are no constraints)

- a rotation $U \cdot p$ of the point p with the matrix U can be expressed as
- q ★ p̄ ★ q⁻¹ in quaternion space IH (HAMILTON formula, C ~ R², IH ~ R⁴)
- where $\bar{p} = (0, p)$ is the canonical quaternion of the point p
- and q = (sin(φ/2), cos(φ/2)u) is the rotation quaternion (with u ∈ ℝ³ being the axis and φ the angle of rotation)
- instead of U with 9 constraint variables
 we have u and φ, i.e., 4 unconstraint variables

- maximal clique detection within the graph of compatible distances
- geometric hashing of the pattern
- distance geometry

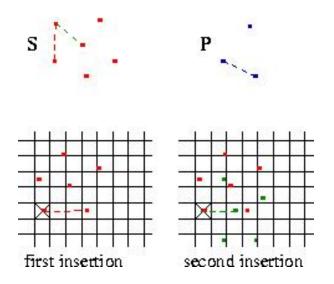
.

- we generate a graph G = (V, E) (graph of compatible distances)
- vertices $v_{ij} \in V$ all pairs (p_i, s_j)
- edges $e = (v_{ij}, v_{kl}) \in E$, if $d(p_i, p_k) \approx d(s_j, s_l)$
- search for maximum cliques in G

- the problem is NP–complete (however, we search only for *cliques* of size ≤ k)
- fast algorithms need adjacency matrices
- if n = |S| = 5000 and k = |P| = 100 we need 30 GByte (counting only one bit per edge)

- preprocessing of the search space
- let's describe the two-dimensional case
 - we align each pair (s_i, s_j) with s_i at the origin and s_j in direction x
 - we insert some information for each other point $s_k \in S$ in a hashtable defined on a grid over S

Example: geometric hashing



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- we simulate an insertion of the points of P into the hashtable
- but we count only the non-empty entries
- many votes reveal candidates for partial alignments
- e.g., if we encounter a pair (p_i, p_j) such that for each other point of the pattern there is a non-empty cell in the hashtable

we have found a perfect candidate

- grid size must be selected beforehand
- preprocessing time $O(n^{d+1})$
- searching time $O(k^{d+1})$
- works only for rigid motion transformations

- we represent both sets S and P as distance graphs
- the vertices of the graphs are the points of the sets
- the edges of the graphs hold the distances between the corresponding vertices
- e.g., $G_P = (P, P \times P)$ complete graph

- we define adequate distance graphs G_P and G_S
- we search for subgraphs G'_S of G_S that are congruent to the graph G_P
 (allowing certain tolerances)
- we optimally align G_P with the subgraphs of G'_S
- we select the best one among all hits
- we extend the search to work with subgraphs of G_P as well
- we select a best subgraph as final solution

- construction of the graphs with: exploitation of locallity properties
- search of subgraphs with: sophisticated backtracking
- alignment with: minimization of cost functions
- search of partial patterns with: reactive tabu search

- let us assume that the pattern P is small
- we construct G_P as the complete graph
- we generate a dictionary D (ordered data structure) that contains all distances (intervals) between points in P
- we consider an edge between two vertices in *G_S* if the distance is present in the dictionary *D*

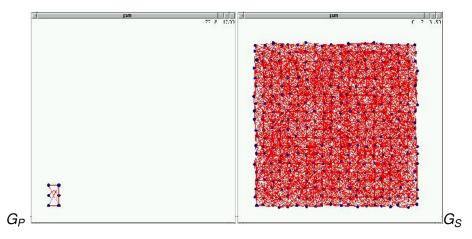
let d_{ij} = d(p_i, p_j) be the distance between two points of P
the dictionary will contain the interval

$$[(1-\varepsilon) \cdot d_{ij} , (1+\varepsilon/(1-\varepsilon) \cdot d_{ij}] \in D$$

where $0 \le \varepsilon < 1$ is an appropriate tolerance

- the upper limit can be simplified to (1 + ε) (but we loose the symmetry)
- we can join intervals in the dictionary *D* if they intersect

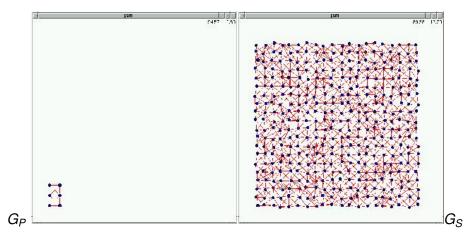
Construction of the graphs that way



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- we construct *G_P* as a connected (and rigid) graph mantaining only the short edges
- we order the points of *S* previously in a grid of size similar to the largest of the intervals

Construction of the graphs that way



• • • • • • • • • • • • •

- let us assume (at the beginning) that *G*_P is a complete graph
- we order the points of *G_P* according to any order e.g.
 (*p*₀,...,*p*_{k-1})
- we apply a backtracking algorithm that tries to encounter for earch p_i a partner s_i following the established ordering
- hence:

- let us assume that we already found a subgraph G_{s0,...,si} where the graph G_{p0,...,pi} can be matched
- we look for candidates s_{i+1} for the next point p_{i+1}
 - that must be neighbors of the point s_i within G_S
 - that must not be matched already and
 - that have similar distances to the s_j ($j \le i$) as the p_{i+1} to the p_j ($j \le i$)
- while there is a candidate we advance with i
- if there are no more candidates for s_{i+1}, s_i cannot be a partner for p_i neither (i.e.: backtracking)

- the algorithm *informs* each time a candidate for for p_{k-1} has been found
- the algorithm terminates when
 - there are no more candidates for *p*₀ or
 - the first solution has been found

- reduction of the edges in G_P implies: reduction of the edges in G_S
- good ordering of the p_i implies: reduction of the number of candidates
- consideration of the type of point (e.g. element type of the atom) implies: reduction of the number of candidates
- all heuristics imply: the backtracking advances faster

- find the subset of the points of the pattern that can be matched best to some points in the search space
- NP–complete
- there are $|\mathcal{P}(P)| = 2^k$ possibilities to choose a subset
- we apply:
 - genetic algorithm
 - reactive tabu search

- maintain graph G_S as complete graph
- genome: sequence of bits indicating si a point belongs to the actual pattern or not
- crossover: two point crossover
- mutation: flip
- selection: roulette wheel
- cost function: distance and size of alignment

- it is not that easy
- once the first solution has been found
- once a sufficiently good solution has been found
- after a certain number of iterations
- once diversity of population is too low

G_S must be a complete graph ¿You know a crossover operation for non–complete graphs?

more precisely: we need a crossover (and mutation) operation that maintains a specific property of the graphs (e.g., connectivity, rigidness)

or some new idea...

- we start with an admissible solution
- we search for possibilities to improve the current solution
- if we can: we choose one randomly
- if we cannot:
 - we search for possibilities to reduce the current solution
 - if we can: we again try improvements
 - if we cannot: we jump to another admissible solution

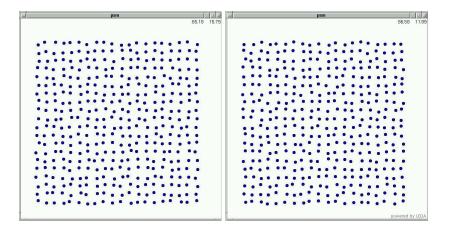
- we avoid repetitive movements taking advantage of a memory that stores intermediate solutions
- i.e.: we mark certain movements as tabu for a certain number of iterations
- reactive means: we adapt the tabu period dynamically

- evaluation of the cost of a solution: number of aligned points plus quality of the alignment
- remember: quality $Q \in]0, 1]$, but we will use $Q \ge$ threshold
- hence, maximal quality: |P| + 1

- representation of the problem: sets of indices of the matched points
- search for candidates to improve (*add*): (rigidly) connected neighbors within graph G_S
- search for candidates to reduce (*drop*): any point of the current solution that mantains the graph G_S connected (and rigid)

- not that simple
- once we found a sufficiently good solution
- once we have run a certain number of iterations

Search for the largest common pattern



Ρ

< 🗇 🕨 < 🖃 >

S

Search for the largest common pattern

	_	pm											98.	77	10.0			_	_	_	_	_	_	_	_	_		ps	m		_	_	_	_	_	_	_	_	74.3	78	13												
	•		•		•			•	•	•							•	•			•	•		•	•	u.			•			•	•		1		•	•		•		•			•			•	•		•		
				•	•			•	•	•		•	•				•	•			•			٠	•				•			•	•					•		•		•					. 7	•	•		•		
			•	è	-	á		•	•				•				•	•			•			•									•						•	•								•	2				
								۲									2												•									3	-									•	2				
								2					-				۰.			•					1								:					2	-														
	2				-	•		۲	2				1	2			1	-			•			•	2								2				•	5	1	-	1					•	•	1	5	-			
				1	•	1	•		•		0.0	9	•	-			•	1		•	0			•					-				2				•	•			•					•	•	•	2		-		
			2		•	1	•					•	۲	•	1		•	1		•		22	•	2	•				•	•		•				•	•	•		•		-	•				•	•					
		• '		۰	•	1	•		•	۰.		•	•	•			•	•		•	•		•		•						• •		•	2	•	• '		•	•	•	•	•		• •		•		•		•	•		
	•		•	•	•	3	•	٠	•			•	•	•		•	•			2	•			•	•				•			•	•	•	1	•	•	•	•	•	٠			• •			•	•	•		•		
•	1		• •	•	•	•		•	•	•		•	•	•		•	•	•			•			•	۰				•	•	8	•	•	•	•	•		•	•	•	•	•		•		•	•	•	•	•	•		
•	C	•	•	•	•		•	•	•	•		•	•	•		£.,	•		• '	•	•		•	•	•						. 1	•	•	•	•		•	•		•	•			٠,	•		•	•	٠	•	•		
•	•			•	•	•		•	•	•			•	•		•	•		۰.		•			•	•				•				•	•	•		•	•				•	•		•			•	•	•	•		
	•		•	•	•			•	•	•							•	•		•	•			٠	•								•				•	•	•			•							•				
			•				2	•				•				£.,	•			•	•	•		٠	•											•	•	•		•									•				
•	ĩ			•				•		•		•		•						•				•						1			•					•			۲	10											
				•	1	-		•					•				•			•	1					1							•				1							1									
				_	•																2				_								_				2			õ									1	1			
				•		9.9			•			•		1										1	•								•					1	-	1								1	2		•		
•	1				1					1		•	•	-		•	-	1	1	•					•	2			•			2	•	•			-	1		•	•						•	•	J	•	•		
				•	•	3	•	•	•	•		•	•	-		•	•	-		•			•	•					•	-	•	•	•	1		•	•	•	1	•	•						•	•	1	-	•		
•	•			•	•		•	•	•	•			•				•	•	1	•	•		•	•	•					•	2.3	•	•		•		•	•	•	•	•	•						•	•		•		

p/P

イロト イ団ト イヨト イヨ

p/S

Search for the largest common pattern

	-	-		_	_	_	_	_	_	_	ps	m	_	_	_	_	_						7	7.18	9.80				_	_						p	sm									_	102.	37	10
																								7.10	0.00																						TUC:	07	
•	•		•			•		5	•	•												•		_		_		_	•	_		2	•												-				
•	ī.,			-	2	2	•		2	2			0	٩.	-		. 2				0	100						•	2	•	•				•			•]					۳.		•		•		
•	•		•	•	۰	•	•			•	•			•	•	•		•	•	•			1				•		•	•	•	•	-		••	•	•		•	•		1	•	•	•	•	•		
•		•	•	•	•		•	•		•	•		•	•	•	٠	•	•			•	•	1	•			۰.			•	•	•	•		•	•		•		•			•	•	•	•	•		
•	•		1	•	•		6	•	•	•				•	•	•				٠				•		•		•	•			•	•								•	•	٠	•	•	•			
•				•		2			ě.		0								•			-					e (i	•	•	ē	•			. 7		•				1		•			•				
			١.			1		6	ĩ		1		1		•					•		1									-						-					Ξ.		1	-				
	1					•		1		2						1				_						80	8			2	-	1										• '	•	1	-				
•	•		2	Ξ.	•	•				0	•				•	•	1	2	•		•					•	1	•			-	•	-	•					•			•	•	•		-			
	•		•	•	•	•		9 0		•	•	•		•	•	•	•			•	•	0		•				• '		•	•	•	•					••		• •	1	•	•	•	•	•	•		
•	•		• ,		•	•				•			• ,		•	•		•	2	•	•					•	5	•	٠		•	•		•	1	, •				•		•	•		•		•		
		0	•		•	•		i a	•	•	•	¢		•	•	•	•				•			•			•	•	•		٠	•	•							. •	•	•	•	•	•	•			
						•	•								•	٦.				•									•							. •							•			-	•		
1	_								•	2				1		0					2										Ξ.										÷.,								
1	۰.				•								•	•				•	١.,		•							•	•	•	-									•			ī.,	•			•		
•	•		•	•	•	•	•	6.1	•		•			•	•		1				•			•				•	•	•	•	•		••		•	1				•		•	•	•	•	•		
•	•		• •	•	•		•		•	•	•		•	•	•	•	•		• •	•	•	-		•		3		•	•	•	•	•	•		•	•		. 6		90	,		۰	•	•	•	•		
•	•			•	•	•				•			•	•	۰	•			•	•	•			•			6 5	•	•	•	•						9	9 (•	•	•	•	•			
•	•			•		•		6.5	•	•	•	•	۰,	•	•	•	•			•	•	•		•					•	•	۰	•						•				•	•	•	•	•	•		
					٦.					•																	•	•					-										•			-			
				1											1						2	-								2	-					17									-				
•	1		•		~				•	Č.				-	۰		1			-				•				•	-	•	1						•	9	-				•	•		-	•		
•				•	•	-	•		•	•	•				•	•	•		•	•	•	•		•		-	•		•	•	-	•	•	•		•		•	•		•	•	•	•	•	•	•		
•	•				•	•	•			•		•	6		٠	۰					•	•	3	•		1	• •		۰	•	•	•			•	•		•			•	•	•	•	•		•		

s/P

イロン イ理 とくほとく ほ

s/S

- instead of the complete graph use a connected sparse graph
- parts of the graph could be rigid
- the graph may specify hinges or torsion axis

- command line tool with configuration file
- GUI
- web-site to perform searches

- almost 11.000 specific lines of C++
- uses the libraries:
 - mtl (matrix template library)
 - Gtkmm (graphical user interface)
 - own libraries

< 4 →

.

- enumerate more rigorously all locations (up to now we have concentrated on the best solution)
- extend the properties of the graphs defining deformations of the pattern (e.g. torsion of parts, restriction of angles)
- allow local tolerances (e.g. per edge), especially with preknowledge of the biochemical properties
- improve heuristics with statistical analysis of distributions of distances (*look for the unusual first*)
- improve the user interface
- more applications