
Evolutionary Computation
2024/25

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

24/25

EC Arno Formella 1 / 16



multi-objective evolutionary algorithms (MOEA)

VEGA, vector evaluated genetic algorithm
Idea: in the selection process parts of the mating parents
are selected according to each objective function
MSGA, multi-sexual genetic algorithm
Idea: individuals are marked as belonging to a certain
objective function, ranking is used to select parents, only
differently marked individuals are used to generate children
NSGA, non-dominant sorting genetic algorithm
Idea: sort individuals according to their dominance, and
design the selection according the dominance classes (i.e.,
work with several fronts, intending to converge eventually
to the Pareto front.

EC Arno Formella 2 / 16



multi-objective evolutionary algorithms (MOEA)

NSGA-II, including elitism, dominant individuals are
preserved in population, clustering is avoided
SPEA, Strength Pareto Evolutionary algorithm
Idea: maintain a fixed set of best individuals while
guaranteeing that they are spread over the Pareto front
without to much clustering

EC Arno Formella 3 / 16



Simulated Annealing

The name and idea stem from the slow and repeated heating
and cooling process of certain materials (usually alloys of
different metals with addings, e.g., iron+carbon) until certain
properties are achieved.

https://en.wikipedia.org/wiki/Simulated_annealing

EC Arno Formella 4 / 16

https://en.wikipedia.org/wiki/Simulated_annealing


Simulated Annealing

Explores a neighbor in the search space, whenever
there is an improvement in the objective function at the
neighbor or
it is not worse than a temperature dependent threshold with
some probability.

Let ∆f be the difference between current solution f and
neighbor solution fn.
Let T be a temperature.
Then the neighbor is accepted whenever either ∆f < 0
(we are going downhill)
or if e−∆f/T > r, for r being a random value in [0 : 1]
(we are going uphill).
With increasing iteration rounds (Monte Carlo iterations
where the temperature is held constant) the temperature is
reduced, hence, the threshold converges towards zero.

EC Arno Formella 5 / 16



Simulated Annealing cooling schemes

linear cooling: T = T0−ηk
with T0 an initial temperature, k the iteration number and η

some free parameter, being constant during optimization.
(To avoid negative temperature: T =max(T0−ηk,Tmin))
exponential cooling: T = aT
with a ∈ [0.8,1) typically; slower cooling the a close to 1.
inverse cooling: T = T/(1+βT)
with β being a small constant (e.g. β = 0.001).
logarithmic cooling: T = T0/ logk
with c a suitable constant.
(Used as well a generalization: T = T0/ log(k+d)).
Not really practical in applications but was used to prove
convergence to global minimum under certain conditions.
inverse linear cooling: T = T0/k.
Not really practical in applications but was used to prove
convergence to global minimum under certain conditions.

EC Arno Formella 6 / 16



Simulated Annealing cooling schemes

It seems that any monotonely decreasing function, that is
neither too steep at the beginning and neither too slow
decreasing in the end, might serve.
Cooling can be implemented differently in each dimension
in multi-dimensional problems.
The entire process can be restarted from another location
in search space (Monte Carlo approach around inner
simulated annealing process).

EC Arno Formella 7 / 16



Simulated Annealing vs. Tabu Search

Both methods belong to the random path methods:
there is only one individual
the moves in the search space explore the neighborhood in
a random manner
a move is accepted whenever

TS: a random, but not tabu, move among the improving once
in first place and non-improving onces in second place.
SA: a random move that fulfills the annealing condition

Tabu search is, as improvements are prefered, a local
search method that finds local minima;
which might not be the case for simulated annealing (you
need to add some final local search approach).

EC Arno Formella 8 / 16



memetic algorithms

The population based algorithms usually do not perform local
optimization of the individuals.

Including such an approach is called a memetic algorithm:

use an adequate local search strategy (e.g. steepest
decent, iterated local search etc.) to improve the fitness of
the individuals
this improvement of an individual is also called individual
learning
the result of the local optimization:

might change the genotype of the individual
(Lamarckian learning), i.e.,
the changed individual participates in the genetic algorithm,
or might not change the genotype of the individual
(Baldwinian learning), i.e.,
the population is not changed

EC Arno Formella 9 / 16



memetic algorithms efficiency considerations

the local search can be restricted to a certain part of the
population, for instance, the best ranked ones
the local search can be restricted to be performed only
after a certain amount of iterations in the overall genetic
algorithm

EC Arno Formella 10 / 16



biogeography-based optimization

The biogeography-based optimization uses the idea of
populations evolving at islands that once in a while
exchange individuals via migration.
Implemented as further meta-heuristic in the framework of
genetic algorithms (especially for separable objective
function, where optimization of their convex combination
is an option).
Can be applied to particle swarm optimization as well
(I have found implementation examples, e.g. from 2017).

EC Arno Formella 11 / 16



much more nature-inspired work done
Without going into details, there is a huge bunch of other
nature-inpired optimization heuristics (see introduction as well):

ant lion optimization
artificial bee colonies
bat algorithm
dragonfly algorithm
firefly optimization
grasshopper optimization
grey wolf optimizer
whale optimization
invasive weed optimization
cristalization of materials
great deluge algorithm
gravitational search algorithm
etc. etc. etc.

EC Arno Formella 12 / 16



issues to be considered

The following issues should be considered when implementing
and using a certain optimization approach for a given problem:

implementation difficulty
number of parameters to be adjusted
population size
number of objective function evaluation
convergence velocity (convergence profile)
handling of local optima (stucking)
handling of restrictions
statistically correct evaluation on benchmark problems
and Monte Carlo runs
is there a Las Vegas condition available?

EC Arno Formella 13 / 16



efficiency issues to be considered

The following efficiency aspect might be useful in a certain
implementation of an optimization approach on a given
platform:

use of parallelization
use of caching
use of efficient data structures
use of adequate precision in calculation
use of approximation algorithms (especially in early
phases for the objective function computation)
use good random number generators

EC Arno Formella 14 / 16



hyper-parameter tuning

Many of the different heuristics seen so far have a certain
number of free parameters that must be fixed when starting the
optimization, but

we might use another optimization algorithm that tries to
find a good parameter set for the original algorithm
for instance, we run the algorithm on a suitable benchmark
suite to obtain good free parameters, and then run the
optimization with these settings on the real problems we
are interested to solve
this process can be iterated, i.e., each use of the optimizer
might adapt to a certain degree its free parameters
eventually we arrive at an online-algorithm which adapts its
parameters with each problem it is faced to

EC Arno Formella 15 / 16



last but not least

that’s it, folks ... thanks. questions?

EC Arno Formella 16 / 16


