
Evolutionary Computation
2022/23

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

22/23

EC Arno Formella 1 / 15



particle swarm optimization (PSO)

The inspiration comes from social behavior of individuals within
an environment including other individuals.

We work with n individuals that move in a continuous
d-dimensional search space.

The individuals move (in steps) through the search space and
adjust their velocities according to information gathered from
others (and their own histories).

The individuals are grouped into neighborhoods.

EC Arno Formella 2 / 15



PSO: velocity actualization

xi vector of current positions

vi vector of current directional velocities

bi best local position vector

hi best neighbor position vector

ϕ1 “ 2.05,ϕ2 “ 2.05 influence values (just some magic)

ξ P r0.4,1s, e.g. ξ “ 0.729 inertia reduction value

velocity actualization

vi “ ξ vi `Ur0,ϕ1s ˝ pbi ´ xiq`Ur0,ϕ2s ˝ phi ´ xiq

xi “ xi ` vi

The ˝ operator is either a Hadamard-operation (i.e.,
component-wise), or a linear operation (i.e., scalar multiplication)

EC Arno Formella 3 / 15



PSO: principal loop

A particle swarm optimization can be summarized in the following
principal loop:

InitializePopulation() # i.e. x_i, v_i
EvaluateIndividuals() # i.e. b_i
DefineNeighborhoodSize()
while not Stopping():

DetermineNeighborhoodValues() # h_i
UpdateIndividuals() # i.e., x_i, v_i, b_i

EC Arno Formella 4 / 15



PSO: some more details

The velocity can be confined not to pass a certain maximum
velocity. This feature helps to avoid explosion, i.e., that the area of
the search space explored by the particles becomes larger and
larger exponentially.
Initial velocities can be zero or some random values.
Small neighborhoods tend to provide a better global search, while
larger neighborhoods tend to produce faster a convergence (but
maybe premature).
Neighborhoods can be defined as nearest neighbors, as fixed and
overlapping, or entail the entire population, or what-ever-you-like.
The inertia reduction can be increased with the simulation time.
The best global individual g can be included in the equation: add
`Ur0,ϕ3s ˝ pg´ xiq

The worst (local and globals) positions can be included to be
avoided: add ´Ur0,ϕ4s ˝ pbi ´ xiq and/or ´Ur0,ϕ5s ˝ phi ´ xiq

and/or ´Ur0,ϕ6s ˝ pg´ xiq

EC Arno Formella 5 / 15



PSO: different versions

binary version: the variables are interpreted as binary values
according to a distribution or threshold

discret version: the variables are interpreted as integer values (for
instance with simple rounding)

dynamic version: the search space is reinitialized and/or the local
variables are reset (type of outer Monte Carlo loop)

EC Arno Formella 6 / 15



PSO: convergence

the individuals should exhibit certain diversity
(recall the similarity measures)

diversity can be forced dynamically by adapting the parameters
alongside the simulation time

or one might use the lack of diversity as a stopping condition

EC Arno Formella 7 / 15



ant colony optimization (ACO)

The idea stems from stigmergy: exercise indirect communication and
coordination through the environment (leave a trace and act on
findings).

The individuals of a population leave information (pheromones) in
the search space.

The decisions are based on individual information or behavior
and on the pheromones encountered.

The information (pheromones) is volatile and can evaporate.

The pheromones or a statistical evaluation of the individuals
define the solution.

The inspiration stems from ants, bees, termites, wasps, etc.

Initially invented to deal with combinatorial problems (like TSP).

EC Arno Formella 8 / 15



ACO: principal loop

An ant colony optimization can be summarized in the following
principal loop:

InitializePheromoneValues()
while not Stopping():

for individuals in range(n):
ConstructSolution(individual)
UpdatePhermoneValues()
UpdateIndividuals()

EC Arno Formella 9 / 15



ACO: how TSP can be approached

The ant colony optimization takes place on the graph of the
underlying problem (here think of the complete graph among all
cities).
The ants are placed at the cities.
The initial pheromones are placed on the edges (either constant
value or inversely proportional to the distance).
The ants (in an appropriate iteration) run along a path in the
graph (excluing already visited cities) and draw at each city a
decision in which direction to continue.
The decision is based on pheromones on each possible edge,
maybe on some own information stored at the individual, and on
a random value.
Once the tour is completed for all ants, all of them deposit their
pheromone on their tracks.
The general evaporation process is applied to all (changed)
edges.
The currently best tour is memorized.
The iteration is repeated until a certain stopping condition is met.

EC Arno Formella 10 / 15



ACO: when to use?

ACO approaches are especially possible when the underlying problem
allows for a constructive solution (as seen with the nearest-neighbor
heuristic for the TSP). Simon gives the example that an ACO approach
found a tour with 3% deficit on the Berlin52 problem.

EC Arno Formella 11 / 15



The no-free-lunch theorem

The no-free-lunch theorem states that the performance of all
optimization (search) algorithms, amortized over the set of all possible
functions, is equivalent. The implications of this theorem are far
reaching, since it implies that no general algorithm can be designed so
that it will be superior to a linear enumeration of the search space
(exhaustive search).

EC Arno Formella 12 / 15



What are practical implications of the no-free-lunch
theorem?

Each problem (or each type/class of problem) might need its own
and proper optimization method.

Maybe for interesting problems we find good optimization
algorithms (we are not interested in all problems).

Benchmarking optimization algorithms is a challenge, as general
benchmarks might just provide average data, but our algorithm
might be special for a niche of problems.

There is a need to categorize problems and algorithms to obtain
some insight on which type of problem a certain type of algorithm
performs well.

EC Arno Formella 13 / 15



How to compare different approaches?

In order to compare different algorithms one might take into account:

wall clock runtime on comparable systems

(average) number of objective functions evaluations
(but the rest of the inverted time must not be neglected)
difficult to be used when comparing constructing algorithms

the result as distance to optimium or to some known lower bound

mean best fitness

properties of the solution histogram (fitness of all solutions found)

scaling properties with problem size (applied to any measure
above)

EC Arno Formella 14 / 15



Practical aspects to be considered

One has to decide what is really needed:

need a good (or best) solution independent of runtime (e.g.
controler for space telescope or the evolved antenna)

need a moderate solution fast (e.g., daily TSP with time windows,
where finding a feasible solution is already NP-hard)

EC Arno Formella 15 / 15


