
Evolutionary Computation
2022/23

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

22/23

EC Arno Formella 1 / 45



the TSP length-line sum-up

length of tour

LCN ¨ ¨ ¨ ¨ ¨ ‚̈ closest-neighbor tour (can be large)

2 ¨Lopt ¨ ¨ ¨ ¨ ¨ ‚̈ minimum spanning tree algorithm (or quick tour)

1.5 ¨Lopt ¨ ¨ ¨ ¨ ¨ ‚̈ Christofides algorithm (best known)

Lplay ¨ ¨ ¨ ¨ ¨ ‚̈ playground for good heuristic algorithms

Lopt ¨ ¨ ¨ ¨ ¨ ‚̈ optimal tour length, Bellman-Held-Karp algorithm

LHKB ¨ ¨ ¨ ¨ ¨ ‚̈ Held-Karp bound (pLopt ´LHKBq{Lopt « 0.01)

LMDB ¨ ¨ ¨ ¨ ¨ ‚̈ minimal distance bound (possible LMDB “ Lopt )

0 ¨ ¨ ¨ ¨ ¨ ‚̈ absolute minimum

EC Arno Formella 2 / 45



additional information

additional information and benchmark instances can be found at:

http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/

almost a counterexample of how to implement GA for TSP
https:

//jaketae.github.io/study/genetic-algorithm/

we use the work at
https://github.com/guofei9987/scikit-opt

EC Arno Formella 3 / 45

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://jaketae.github.io/study/genetic-algorithm/
https://jaketae.github.io/study/genetic-algorithm/
https://github.com/guofei9987/scikit-opt


the sorting problem

Sorting is a basic, well known, and well studied problem.

Given a sequence of n elements belonging to an orderable set,
we have to compute a permutation of the input elements such that
they are ordered (according to the underlying compare function).

Simple example: given a sequence of integer numbers; sort
ascending.

Note that there are n! possible permutations.
(Funny, the same number as there are tours in TSP.)

EC Arno Formella 4 / 45



checking a solution

Before doing the actual sorting, let’s first design an algorithm that
checks the results, i.e., checks that the sequence is sorted.

Remember: we require that we can check with an algorithm that
the output/result of our initial algorithm is correct
(i.e., fulfills the corresponding properties).

Personally, I recommend that you always try to design and
implement such a checker!

EC Arno Formella 5 / 45



checker for the sorting problem

Check whether a pair of elements is sorted:

def PairIsSorted(v,i,j):
return v[i]<=v[j]

Check whether a sequence of elements is sorted:

def IsSorted(v):
for i in range(len(v)-1):

if not PairIsSorted(v,i,i+1):
return False

return True

EC Arno Formella 6 / 45



the bubble sort algorithm

A simple sorting algorithm:

def BubbleSort(v):
while not IsSorted(v):
for i in range(len(v)-1):
PairSort(v,i,i+1)

Runs in quadratic time (worst case) and linear time (best case).

EC Arno Formella 7 / 45



Monte Carlo sorting

Let us implement a Monte Carlo sorting algorithm:
we select a random pair of elements and interchange when necessary:

def MonteCarloSort(v,rounds):
for j in range(rounds):

i,j=RandomPair(v)
PairSort(v,i,j)

Whenever the number of rounds is sufficiently large and we are lucky
the sequence will become sorted.

EC Arno Formella 8 / 45



Las Vegas sorting

Let us implement a Las Vegas sorting algorithm: we select a random
pair of elements, interchange when necessary, and stop when the
sequence is sorted:

def LasVegasSort(v):
while not IsSorted(v):
i,j=RandomPair(v)
PairSort(v,i,j)

Maybe we need to wait a lot of time, but we always get a sorted
sequence. Observe: Las Vegas algorithms are easy to design, when
we have a checker!

EC Arno Formella 9 / 45



Las Vegas Monte Carlo sorting

Whenever we have a checker, we can implement a Las Vegas
algorithm on the base of a Monte Carlo algorithm, so for sorting we
can do:

def LasVegasMonteCarloSort(v,rounds):
while not IsSorted(v):
MonteCarloSort(v,rounds)

EC Arno Formella 10 / 45



Monte Carlo sort with Las Vegas condition

We can improve the Monte Carlo sort introducing a Las Vegas
condition to stop earlier:

def MonteCarloLasVegasSort(v,rounds):
while not IsSorted(v) and rounds>0:
i,j=RandomPair(v)
PairSort(v,i,j)
rounds-=1

This idea reflects the general structure of a heuristic probabilistic
algorithm: for a certain time do something maybe useful, and stop
when a certain condition is met.

EC Arno Formella 11 / 45



Efficient sorting

An efficient Opn lognq algorithm is the merge sort algorithm, here
written in its iterative form (divide and conquer paradigm):

def Merge(v,w,left,middle,right):
i,j=left,middle
for k in range(left,right):
if j>=right or (i<middle and PairIsSorted(v,i,j)):
w[k]=v[i]; i+=1

else:
w[k]=v[j]; j+=1

def MergeSort(w):
s,n=1,len(w)
while s<n:

v=w[:]
for left in range(0,n,2*s):
Merge(v,w,left,left+s,min(left+2*s,n))

s*=2

EC Arno Formella 12 / 45



sorting as an optimization problem

In order to state the integer sorting problem as an optimization
problem, we need to specify an objective function.

Let x “ px1,x2, . . . ,xnq be the current sequence of integer values.

We use f pxq “
řn

i“1 i ¨ xi as objective function.

Our aim is to maximize f pxq at which point the sequence x is
sorted; to minimize we take the negative value:

def SortObjective(v):
f=0
for i in range(len(v)):

f+=v[i]*(i+1)
return -f

or

def SortObjective(v):
return -sum([v[i]*(i+1) for i in range(len(v))])

EC Arno Formella 13 / 45



sorting as an optimization problem

Now, we can use a genetic algorithm for the TSP problem to sort our
sequence (note, we want an order on the cities, but now with our
objective function for sorting and not the one for a minimal tour length).

def GASort(w):
ga=GA_TSP(

func=fobj,n_dim=len(w),size_pop=100,
max_iter=1000,prob_mut=1

)
best_points,best_val=ga.run()
v=w.copy()
for i in range(len(best_points)):
w[i]=v[int(best_points[i])]

More in lab hours (fobj will be computed on a different data
structure).

EC Arno Formella 14 / 45



convergence of bubble sort

Slow improvement, finds the minimum always.

EC Arno Formella 15 / 45



convergence of Monte Carlo sort

Fast improvement, fixed number of steps, might not find minimum.

EC Arno Formella 16 / 45



convergence of Las Vegas sort

Fast improvement at the beginning, and slowly finds the minimum.

EC Arno Formella 17 / 45



convergence of Las Vegas with Monte Carlo sort

EC Arno Formella 18 / 45



convergence of Monte Carlo sort with Las Vegas condition

Fast improvement, but might not find minimum (however, stops if
found).

EC Arno Formella 19 / 45



convergence of merge sort

Deterministic very fast improvement, finds the minimum always!

EC Arno Formella 20 / 45



convergence of genetic algorithm sort

Well, works, but might not find the minimum.

EC Arno Formella 21 / 45



summary of convergence for sorting algorithms

Maybe the genetic algorithm is not the right choice,
better stick to the deterministic classic one.

EC Arno Formella 22 / 45



Can we sort faster?

You can always ask: can we sort faster?

It depends... when we have more information about the data,
maybe we can sort faster!

In the given example, we started with a random permutation of n
consecutive numbers.

So sorting them is easy: just count—starting at the minimum—up
to n, hence, a linear time algorithm!

It’s always worthwhile to analyse the underlying data!

EC Arno Formella 23 / 45



interpretation of the results

Don’t get betrayed by a small number of program runs that might even
suggest some good results (both in precision as well as in runtime).
You should always ask to see several/many runs, and to determine the

variance of the results, so that you can compute the Monte Carlo
standard error.

EC Arno Formella 24 / 45



The (0,1)-knapsack problem

The (0,1)-knapsack problem (KSP) is another classical combinatorial
optimization problem, where

Given a set of items, each with a certain weight and value, and

given a knapsack with a certain weight capacity,

find the maximum total value you can carry with the knapsack.

Note that in this problem (in comparison to TSP or sorting) we have
infeasible combinations (i.e., the subset might be too heavy).

EC Arno Formella 25 / 45



an example knapsack problem

If we take all available items:

EC Arno Formella 26 / 45



packing the knapsack with greedy weight algorithm

We take the lightest items as long as they fit:

EC Arno Formella 27 / 45



packing the knapsack with greedy value algorithm

We take the most valued items as long as they fit:

EC Arno Formella 28 / 45



packing the knapsack with greedy ratio algorithm

We take the best rated (value per weight unit) items as long as they fit:

EC Arno Formella 29 / 45



optimal packing the knapsack with dynamic programming

We find the optimal solution with dynamic programming:

EC Arno Formella 30 / 45



It seems all algorithms are great?

The previous algorithms all packed a value of 27 into the knapsack...

You noticed that I have cheated?

All algorithms found an optimal packaging!

You know why?

I was lucky.

EC Arno Formella 31 / 45



parallelization

Monte Carlo algorithms, and hence, evolutionary algorithms are
often quite easy to parallelize.

We will not talk about parallelization in this course, however, it’s
an important issue in order to achieve performance on modern
systems.

EC Arno Formella 32 / 45



Evolutive methods

Evolutive methods work with populations of individuals
(or only one individual and a certain type of memory).

There are probabilistic modification processes
(mutation, reproduction, recombination/crossover) that change
the population from one to the next generation.

The performance of the individuals is based on a fitness which
usually is the objective function (but not necessarily).

There is a selection process to maintain a (more or less) stable
state (size) of the population.

Most of the algorithmic decisions are drawn probabilistically.

I will not give details on the history and researchers, please, take a
look at the literature/bibliography.

EC Arno Formella 33 / 45



Genetic algorithms (GA)

We distinguish the genotype (codification of the individuals) and
the phenotype (elements of the search space).

There must exist a bijection between genotype and phenotype.

The genotype encodes the free parameters of an individual.

The modifications (mutation and recombination/crossover) are
carried out over the genotype.

The fitness is evaluated over the phenotype (our objective
function).

We have to explain: codification (of the genotype), initialization,
mutation, recombination/crossover, selection, and stopping.

EC Arno Formella 34 / 45



GA: principal loop

A genetic algorithm can be summarized in the following principal loop:

InitializePopulation() # initialization
EvaluateIndividuals() # evaluation
while not Stopping(): # stopping

DetermineParents() # selection
GenerateChildren() # recombination
MutateChildren() # mutation
EvaluateIndividuals() # evaluation
ReestablishPopulation() # selection

EC Arno Formella 35 / 45



GA: encoding of the individuals

There are many possibilities how to encode the free parameters of an
individual to form its genotype:

use a binary bitstring, e.g., p101101q
use a sequence of integer values in certain ranges, e.g.,
p2,6,98,3q P r1 : 2sˆ r1 : 10sˆ r0 : 100sˆ r1 : 5s
use a sequence of real values in certain ranges, e.g.,
p1.23,34.4,´2.1q P r´50.0,50.0s
use a permutation
use a k-dimensional structure
use a binary tree
use a general graph
use whatever you like (remember: do something, be happy...)

Remember: we need a bijection between genotype and phenotype
and we need to implement crossovers and mutations that are able to
explore the entire search space (or at least the region of interest).

EC Arno Formella 36 / 45



GA: names taken from biology

The individial components of the sequences are called genes.

The possible values of a gene are called allele.

The encoding of an individual is called its genome or
chromosome.

EC Arno Formella 37 / 45



GA: genotype an example

green: base stations

crosses: mobile users

magenta: assignment

goal: find the minimal subset
of base stations that
guarantees an assignment
of all mobiles

Note: computation of the
objective function is quite
complex (and will not be
detailed here).

EC Arno Formella 38 / 45



GA: genotype an example

initial
8ˆ8 grid

reduced to
3ˆ3 grid

4 allele
(2-bit strings)

unusable
used
unused
fixed

EC Arno Formella 39 / 45



GA: mutation possiblities

gene mutation:
just change one (or more) genes to another permitted
allele

gene flip:
interchange the values of two genes

gene sequence displacement:
cut a sequence and insert at another position

gene sequence inversion:
revert the order of a (partial) sequence

what-ever-you-like:
do something, be happy...

EC Arno Formella 40 / 45



GA: mutation rules of thumb

The mutation rate should be inversely proportional to the size of
the genome.

For larger populations maybe reduce mutation rate in the
on-going optimization process.

EC Arno Formella 41 / 45



GA: crossover possiblities

simple crossover:
parents cut children
p101101q p10|1101q ÝÑ p100111q
p010111q p01|0111q ÝÑ p011101q

p2,8,98,3q p2,8, |98,3q ÝÑ p2,8,40,4q
p1,9,40,4q p1,9, |40,4q ÝÑ p1,9,98,3q

k-point crossover:
cut at k points and interchange the corresponding parts
(variation: take k at random)

uniform crossover:
interchange each gene with certain probability

multiple parent mating:
use more then two parents and interchange genes
(variation: merge entire parent set)

EC Arno Formella 42 / 45



GA: crossover possiblities (continued)

arithmetic crossover: assign to children linear combination of parent
genes with some random weight, α P r0,1s, e.g., with
α “ 0.7 on second gene:
p1.23,34.5,´2.1q ÝÑ p1.23,28.2,´2.1q
p10.5,13.5,23.1q ÝÑ p1.23,19.8,23.1q
(again variations: as k -point, or with all genes, or with k
at random)

blended crossover: blend two corresponding parent genes with a
certain, usually fixed, value α P r´0.5,8s according to
the current gene spread

simulated binary crossover: blend two corresponding parent genes
according to a suitable probability density function

what-ever-you like: remember, do something, be happy...

EC Arno Formella 43 / 45



GA: crossover example (2-point cyclic crossover)

select two
grid points

interchange
rectangles

EC Arno Formella 44 / 45



GA: principal loop

A genetic algorithm can be summarized in the following principal loop:

InitializePopulation() # initialization
EvaluateIndividuals() # evaluation DONE
while not Stopping(): # stopping

DetermineParents() # selection
GenerateChildren() # recombination DONE
MutateChildren() # mutation DONE
EvaluateIndividuals() # evaluation DONE
ReestablishPopulation() # selection

EC Arno Formella 45 / 45


