JSR-166: Concurrency Utilities Present and Future

+ The java.util.concurrent package aims to do for concurrency what

java.util.Collections did for data structures. It makes # JSR-166 is based on over 3 years experience with

EDU.oswego.cs.dl.util.concurrent
Some problems go awa

P g y # Many refactorings and functionality improvements
+ Additional native/JVM support

+ Timing, atomics, built-in monitor extensions

+ Some problems trivial to solve by everyone
<+ Some problems easier to solve by concurrent programmers

Some problems possible to solve by experts + A preliminary release of JSR-166 APIs, implementations, and JVM

enhancements will be available soon

Whenever you are about to use...
Object.wait, notify, notifyAll,
synchronized,

:/lgee.cs.oswego.edu
http://gee.cs.oswego.edu

new Thread();

Check first if there is a class that ...
— automates what you are trying to do, or

— would be a simpler starting point for your own solution

JSR-166 Components Main Interfaces

+ Executors, Thread pools, and Futures Lock Voi(gevggo'tlon ‘ Collection ‘
id lock i a
=) + Queues and blocking queues = xg:d L?,ﬁo(c)ko void signal() I
8 e o boolean trylock() Quel‘.je
: # Timing o Conditi boolean add(Object x)
o o newCondition() Object poll()
#* Locks and Conditions & AN
= : . = \
7) # Synchronizers: Semaphores, Barriers, etc 7] ‘
o =] | ReentrantLock| ... ; Blockin
) #+ Atomic variables & ‘ w LinkedQ . oc .gQueue
O - v0|q put(Object x)
o # Miscellany O Object take(); ...
= Executor
B fe1 void execute(Runnable r) |
= ArrayBQ | ... LinkedBQ

\
ThreadExecutor

:/lgee.cs.oswego.edu

>
=
9
o
(@)
)
=
7
Q
0
<
@
d)
(@)
=

Executors

Standardize asynchronous invocation
— use anExecutor.execute(aRunnable)
— not new Thread(aRunnable).start()
+ Two styles supported:
— Actions: Runnables
— Functions (indirectly): Callables
— Also cancellation and shutdown support
+ Most access via Executors utility class
— Configures very flexible ThreadExecutor

— Also ScheduledExecutor for time-delayed tasks

Thread Pool Example

class WebService {
public static void main(String[] args) {
Executor pool =
Executors.newFixedThreadPool(7);
ServerSocket socket = new ServerSocket(999);

for (;;) {

final Socket connection = socket.accept();
pool.execute(new Runnable() {
public void run() {
new Handler().process(connection);

1);

}

}
}

class Handler { void process(Socket s); }

http://gee.cs.oswego.edu

S
S
Q
o
)
)
=
7
o
0
g
o)
)
i
=
el
=
[

Thread Pools in Service Designs

Thread Pools

ThreadExecutors can vary in:
+ The kind of task queue
Maximum and minimum number of threads
¥ Shutdown policy
Immediate, wait for current tasks
+ Keep-alive interval until idle threads die
+ To be later replaced by new ones if necessary
+ Before/after methods around tasks
+ Factory methods package some common settings
newSingleThreadExecutor()
<+ newFixedThreadPool(int nthreads)
+ newCachedThreadPool()

+# Reuses threads when available, else constructs

:/lgee.cs.oswego.edu

>
=
9
o
(@)
)
=
7
Q
0
<
@
d)
(@)
=

Futures and Callables

+ Callable is functional analog of Runnable

interface Callable<V> {
V call() throws Exception;

}

— Normally implement with an inner class that supplies
arguments to the function

Future holds result of asynchronous call, normally to a
Callable

interface Future<V> {
V get() throws InterruptedException,
ExecutionException;
/I plus timeout versions and misc

Queues

+ Queue interface added to java.ultil

interface Queue<E> extends Collection<E> {
boolean add(E x);
E poll();
E remove() throws NoSuchElem...;
E peek();
E element() throws NoSuchEle..;

}

— Retrofit (non-thread-safe) java.util.LinkedList
implement

— Add (non-thread-safe) java.util.PriorityQueue

— Fast thread-safe non-blocking
java.util.concurrent.LinkedQueue

to

http://gee.cs.oswego.edu

S
S
Q
o
)
)
=
7
o
0
g
o)
)
i
=
el
=
[

Futures Example

class ImageRenderer { Image render(byte[] raw); }
class App { ...
Executor executor = ...; /I any executor
ImageRenderer renderer = new ImageRenderer();

public void display(final byte[] rawimage) {
try {

Future<lmage> image = Executors.invoke(executor

new Callable<Image>(){
public Image call() {
return renderer.render(rawlmage);

1)

drawBorders(); /I do other things ...
drawCaption(); /I ... while executing
drawlmage(image.get()); /I use future

catch (Exception ex) {
cleanup();
return;

}
1}

Blocking Queues

interface BlockingQueue<E> extends Queue<E> {
void put(E x) throws IE;
boolean offer(E x, long time, TimeUnit unit)
throws InterruptedException;

E take() throws InterruptedException;

E poll(long timeout, TimeUnit unit)
throwslInterruptedException;
}

— Common in producer-consumer designs

+ Some first-rate implementations

+ LinkedBlockingQueue , PriorityBlockingQueue
ArrayBlockingQueue , and SynchronousQueue

Blocking Queue Example TimeUnits

class LoggedService { ...
final BlockingQueue<String> msgQ =
new LinkedBlockingQueue<String>();
public void serve() throws InterruptedException {
... perform service ...
ring status = ... ;
msgQ.put(status);

#+ Standardize time usage across APIs, without forcing use of
inappropriate units

— SECONDSMILLISECONDS MICROSECONDSIANOSECONDS
x = queue.poll(3, TimeUnit. SECONDS)

— TimeUnit class also supplies conversions and other time-
based utilities

public LoggedService() { // start background thread
Runnable logr = new Runnable() {
public void run() {

+ Provides high resolution timing support

:/lgee.cs.oswego.edu

http://gee.cs.oswego.edu

try { — static long nanoTime()
for(;;)
System.out.printin(msqQ.take()); — Value is unrelated to java.util.Date,
} catch(InterruptedException ie) {} }}; System.currentTimeMillis etc
ecutors.newSingleThreadExecutor().execute(logr);
}
}
Locks
Lock API

+ Flexibility at expense of verbosity interface Lock {

lock.lock(); void lock();
try { void lockinterruptibly() throws IE;
action(); boolean trylock();

boolean trylock(long timeout,
finally { TimeUnit unit)throws IE;

void unlock();
Condition newCondition();

}

#+ Concrete ReentrantLock implementation

lock.unlock();

+ Overcomes limitations of synchronized

>
S S
[}]
) o
O)
(] ()
= =
(72} 0
o} O
N)]
8 o
(0]

o] 5
@) ~—
I~ o3
E Q_
=
=

— Doesn't force block structured locking/unlocking — Fast, scalable with synchronized block semantics, and
. . o additional query methods
~ Allow interruptible lock acquisition and "try lock — Also FairReentrantLock subclass with slower but more

— Can define customized implementations predictable first-in-first-out arbitration

:/lgee.cs.oswego.edu

>
=
9
o
(@)
)
=
7
Q
0
<
@
d)
(@)
=

Lock Example

class ParticleUsingLock {
private int x, y;
private final Random rng = new Random();
private final Lock lock = new ReentrantLock();

public void move() throws InterruptedException {
lock.lockinterruptibly(); /I allow cancellation
try {
X += rng.nextint(3) - 1;
y += rng.nextint(3) — 1,

finally { lock.unlock(); }

}

public void draw(Graphics g) {
intIx, ly;
lock.lock(); /I no interrupts — AWT Event Thread
try {

Ix=x;ly=y;
finally { lock.unlock(); }
g.drawRect(lx, ly, 10, 10);
}1}

Conditions

interface Condition {
void await() throws IE;
void awaitUninterruptibly();
long awaitNanos(long nanos) throws IE;
boolean awaitUntil(Date deadline) throws IE;
void signal();
void signalAll();

}

+ Allows more than one wait condition per object
— Even for built-in locks, via Locks utility class

#* Allows much simpler implementation of some classic

concurrent designs

http://gee.cs.oswego.edu

S
S
Q
o
)
)
=
7
o
0
g
o)
)
i
=
el
=
[

Read-Write Locks

interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

+ A pair of locks for enforcing multiple-reader, single-writer

access
— Each used in the same way as ordinary locks

Concrete ReentrantReadWriteLock

— Almost always the best choice for apps
— Each lock acts like a reentrant lock
— Write lock can “downgrade” to read lock (not vice-versa)

Bounded Buffers using Conditions

class BoundedBuffer {
Lock lock = new ReentrantLock();
Condition notFull = lock.newCondition();
Condition notEmpty = lock.newCondition();
Object[] items = new Object[100];
int putptr, takeptr, count;
public void put(Object x)throws IE {
lock.lock(); try {
while (count == items.length)notFull.await();
items[putptr] = x;
if (++putptr == items.length) putptr = 0;
++count;
notEmpty.signal();
} finally { lock.unlock(); }

public Object take() throws IE {
lock.lock(); try {
while (count == 0) notEmpty.await();
Object x = items[takeptr];
if (++takeptr == items.length) takeptr = 0;
--count;
notFull.signal();
return x;
} finally { lock.unlock(); }
1}

:/lgee.cs.oswego.edu

>
=
9
o
(@)
)
=
7
Q
0
<
@
d)
(@)
=

Synchronizers

#+ A small collection of small classes that:

— Provide good solutions to common special-purpose
synchronization problems

— Provide better ways of thinking about designs
* But worse ways when they don't naturally apply!
— Can be tricky or tedious to write yourself
+ Semaphore, FairSemaphore
CountDownLatch
+ CyclicBarrier
+ Exchanger

Semaphores in Resource Pools

class ResourcePool {
FairSemaphore available =
new FairSemaphore(N);
Object[] items = ... ;

public Object getltem() throws IE {
available.acquire();
return nextAvailable();

}

public void returnitem(Object x) {
if (unmark(x))
available.release();
}

synchronized Object nextAvailable();
synchronized boolean unmark(Object x);

http://gee.cs.oswego.edu

S
S
Q
o
)
)
=
7
o
0
g
o)
)
i
=
el
=
[

Semaphores

Semaphores can be seen as permit holders

— Create with initial number of permits
— acquire takes a permit, waiting if necessary
— release adds a permit
— But no actual permits change hands.
* Semaphore just maintains the current count.

#+ Can use for both “locking” and “synchronizing”

— With initial permits=1, can serve as a lock
— Useful in buffers, resource controllers
— Use in designs prone to missed signals

* Semaphores “remember” past signals

CountDownLatch Example

class Driver { ...
void main(int N) throws InterruptedException {
final CountDownLatch startSignal = new CountDownLatch(1);
final CountDownLatch doneSignal = new CountDownLatch(N);

for (inti=0;i<N; ++i) /I Make threads
new Thread() {
public void run() {
try {
startSignal.wait();
doWork();

doneSignal.countDown();

catch(InterruptedException ie) {}
}-start();

initialize();

startSignal.countDown();
doSomethingElse();
doneSignal.await();
cleanup();

/I Let all threads proceed

/I Wait for all to complete

CyclicBarrier Example Exchanger Example

class Solver { /I Code sketch
void solve(final Problem p, int nThreads) { class FillAndEmpty {
Exchanger ex = new Exchanger();
Buffer initialEmptyBuffer = ... /I a made-up type

final CyclicBarrier barrier = new CyclicBarrier (nThreads,
Buffer initialFullBuffer = ...;

new Runnable() {

li i .check ;
p.ub ic void run() { p.checkConvergence(); }} class FillingLoop implements Runnable {

=) >
8 '] public void run() {
%oy for (inti=0; i< nThreads; ++i) { g E;lf{fer b = initialEmptyBuffer;
final intid = i; 2 while (b != null) {
= Runnable worker = new Runnable() { = addToBuffer(b);
%) final Segment segment = p.createSegment(id); 0 if (b.full()) b = (Buffer)(ex.exchange(b));
o public void run() { o }}catch(...) ...}
z try { 3
o while (Ip.converged()) { ()))
O segment.upda_te(); ' % pﬂgﬁi \I/EonpxlggL{oop implements Runnable {
(@) N —
<< } barrier.await(); E_ Buffer b = initialFullBuffer;
£ try {
) < while (b = null
catch(Exception e) { return; } take,(:romBuff)e{r(b);
} if (b.empty()) b = (Buffer)(ex.exchange(b));
h }}cateh(..) ...}
new Thread(worker).start(); }
}
}
Atomics : :
Atomic Variable Example
#+ j.u.c.atomic contains classes representing scalars

supporting "CAS"

class Random { /I snippets

boolean compareAndSet(expectedV, newV) _)
private AtomicLong seed;

= — Atomically setto newVif holding expectedV S Random(long s) {
U — H .
g — Always used in a loop 2 Iongsr?:z(;{ new AtomicLong(s); }
#+ Essential for writing efficient code on MPs § for(;;) {
& — Nonblocking data structures, optimistic algorithms, & long s = segd.g*et(); _
@ reducing overhead and contention when updates center on 9 long nexts =s * .. +..;
(8] i ; g if (seed.compareAndSet(s,nexts))
) a single field o
% . (1) return s;
. #* JVMs use best construct available on platform D) }
= . . =
o — Compare-and-swap, Load-linked/Store-conditional, Locks = }}
=

#+ j.u.c.a also supplies reflection-based classes that allow CAS

on given volatile fields of other classes — Faster and less contention in programs with a single

Randomaccessed by many threads

Optimistic Linked Lists

class OptimisticLinkedList { I/l incomplete
static class Node {
volatile Object item;
final AtomicReference<Node> next;
Node(Object x, Node n) {
item = x; next = new AtomicReference(n); }

S

=)

Q final AtomicReference head = new AtomicReference(null);
o

public void prepend(Object x) {

% if (x == null) throw new lllegalArgumentException();

o] for(;;){

8 Node h = head.get();

@ if (head.compareAndSet(h, new Node(x, h)) return;
O .

=

public boolean search(Object x) {
Node p = head.get() ;
while (p = null && x = null && Ip.item.equals(x))
p = p.next.get();
return p != null && x = null;
}

} /I remove(x) is much harder!

JSR-133: Fixing the Memory Model

+ A memory model specifies how threads and objects interact
<+ Atomicity
Locking to obtain mutual exclusion for field updates
+ Visibility
Ensuring that changes made in one thread are seen in
other threads
@+ Ordering

Ensuring that you aren’t surprised by the order in which
statements are executed

#+ Original JLS spec was broken and impossible to understand

>
=
9
o
(@)
)
=
7
Q
0
<
@
d)
(@)
=

¥ Included unwanted constraints on compilers and JVMs,
omissions, inconsistencies

+ JSR-133 still officially "in progress” but Sun JDKs conform to
main rules as of 1.4.0

<+ The basic rules are easy. The more formal spec is not.

http://gee.cs.oswego.edu

S
S
Q
o
)
)
=
7
o
0
g
o)
)
i
=
el
=
[

Other JSR-166 Features

+ Customizable per- Thread UncaughtExceptionHandlers
Concurrent Collection implementations
— ConcurrentHashMap , CopyOnWriteArrayList

— Improvements to existing thread-safe collections in part
based on JSR-133 Memory Model rules

ThreadLocal.remove

— Helps avoid resource exhaustion

JSR-133 Main Rule

Thread 1 Thread 2

Everything
before the
unlockon M ...

x=1
... visible to
everything

after the
lock on M

-
=
Q
o
(@)
)
=
7
Q
”
<
o)
9]
(@)
=

Additional JSR-133 Rules

+ Variants of lock rule apply to volatile fields and thread control
@ Writing a volatile has same basic memory effects as unlock
+ Reading avolatile has same basic memory effects as lock
+ Similarly for thread start and termination
@+ Details differ from locks in minor ways

+ Final fields

+ All threads will read the final value so long as it is guaranteed
to be assigned before the object could be made visible to other
threads. So DON'T write:

class Stupid implements Runnable {

final int id;
Stupid(int i) { new Thread(this).start(); id=1i; }
public void run() { System.out.printin(id); }

+ Extremely weak rules for unsynchronized, non-volatile, non-final
reads and writes

+ type-safe, not-out-of-thin-air, but can be reordered, invisible

