Optimization and search in discrete spaces
Own investigation

Dr. Arno Formella

Departamento de Informática
Universidad de Vigo

10/05/07
Three applications

- approximate point set match in 2D and 3D
- selection of node B sites in UMTS wireless networks
- approximation of point sets with shapes
approximate Point Set Match in 2D and 3D
¿Dónde está Wally?
Motivation

- searching of patterns (relatively small sets of two- or three-dimensional points), within search spaces (relatively large point sets)
- comparing point sets
- key words
 - geometric pattern matching, structure comparison, point set matching, structural alignment, object recognition
Joint work with

- Thorsten Pöschel
- some ideas from: Kristian Rother, Stefan Günther
- Humboldt Universität—Charité Berlin
 http://www.charite.de/bioinf/people.html
- Current project: superimpose (Raphael Bauer)
- there will be other algorithms to compare with
Search of a substructure in a protein search space
Search of a substructure in a protein

search pattern
¿Dónde está Wally?
Informal problem description

given a search space and
a search pattern,
find the location within the space
which represents best the pattern
Extensions

- find the best part of the pattern which can be represented within the search space
- allow certain types of deformation of the pattern
- find similar parts within the same point set
Formal problem description

- search space:
 \[S = \{s_0, s_1, \ldots, s_{n-1}\} \subset \mathbb{R}^d, \quad |S| = n \]
- search pattern:
 \[P = \{p_0, p_1, \ldots, p_{k-1}\} \subset \mathbb{R}^d, \quad |P| = k \leq n \]
- dimension \(d = 2 \) or \(d = 3 \)
the aligning process can be separated in two parts
- find the matching points in the pattern and the search space
- find the necessary transformation to move the pattern to its location

an approximate alignment must be qualified
Matching

- a matching is a function that assigns to each point of the search pattern a different point of the search space
- \(\mu : P \rightarrow S \) injective, i.e.,
- if \(p_i \neq p_j \) then \(\mu(p_i) \neq \mu(p_j) \)
- let's write: \(\mu(p_i) = s'_i \) and \(\mu(P) = S' \)
Transformations

- transformations which maintain distances: translation, rotation and reflection
- transformations which maintain angles: translation, rotation, reflection and scaling
- deforming transformations: shearing, projection, and others (local deformations)
Congruent and similar transformations

- rigid motion transformation
 (euclidean transformation or congruent transformation)
 only translation and rotation
- similar transformation
 rigid motion transformation with scaling
- we may allow reflections as well (L–matches)
- let T be a transformation (normally congruent)
- we transform the pattern
- let’s write: $T(p_i) = p'_i$ and $T(P) = P'$
a matching μ together with a transformation T is an alignment (μ, T)

- rigid motion transformation: congruent alignment
- with scaling: similar alignment
- with reflection: L–alignment
One-dimensional example

- - - - - - - - - - -
 ● ● ● ● ● ● ● ● ● ●
- - - - - - - - - - -
 ● ● ● ● ● ● ● ● ● ●
- - - - - - - - - - -
 ● ● ● ● ● ● ● ● ● ●

Dr. Arno Formella (Universidad de Vigo)
let \((\mu, T)\) be an alignment of \(P\) in \(S\)

we can measure the distances between transformed points of the pattern and their partners in the search space

i.e., the distances

\[
d_i = d(T(p_i), \mu(p_i)) = d(p_i', s_i')
\]

obviously, if \(d_i = 0\) for all \(i\)
then the alignment is perfect
Examples of different distances of an alignment

- root mean square distance (RMS)

\[d = \sqrt{\frac{1}{n} \sum_{i} (p'_i - s'_i)^2} \]

- average distance (AVG)

\[d = \frac{1}{n} \sum_{i} |p'_i - s'_i| \]

- maximum distance (MAX)

\[d = \max_{i} |p'_i - s'_i| \]
there are many interesting distance measures

a distance d has its value in $[0, \infty[$

we use the quality Q of an alignment $Q = 1/(1 + d)$

(other possibility: $Q = \exp(-d)$)

hence: $Q = 1$ perfect alignment, $Q \in]0, 1]$ and $Q < 1$ approximate alignment
Formal problem description

- given a search space S, and
- given a search pattern P
- given a distance measure
- find an alignment (μ, T) of P in S
 with minimum distance d (or maximum quality Q)
Perfect congruent alignments

- congruent alignments in \mathbb{R}^3 (Boxer 1999):
 \[
 O(n^{2.5} \sqrt{\log^* n} + kn^{1.8} (\log^* n)^{O(1)} \log n)
 \]
 output

- for small k the first term is dominant

- $\log^* n$ is smallest l such that
 \[
 2^{2^{\cdots^{2}}} \quad l-veces \geq n \quad \log^* n = 5 \implies n \approx 2^{65000}
 \]
Perfect similar alignments

- similar alignments in \mathbb{R}^3 (Boxer 1999):
 \[O(n^3 + \underbrace{kn^{2.2}}_{\text{output}} \log n) \]

- searching approximate alignments and/or partial alignments is a much more complex problem
Perfect alignments
ideas

- choose one triangle, e.g. \((p_0, p_1, p_2)\), of \(P\)
- search for all congruent triangles in \(S\)
 (and their corresponding transformations)
- verify the rest of the points of \(P\)
 (after having applied the transformation)
- the run time is not proportional to \(n^3\) (in case of congruence)
 because we can enumerate the triangles of \(S\) in a sophisticated manner and there are not as many possibilities
Approximate alignments

- as stated, we work in two steps
 - we search for adequate matchings μ
 (according to a certain tolerance)
 - we calculate the optimal transformations T
 (according to a certain distance measure)
- we select the best alignment(s)
let $S' = \mu(P)$ be a matching

let d be a distance measure

we look for the optimal rigid motion transformation T, (only translation and rotation), such that

$d(T(P), \mu(P)) = d(P', S')$ is minimal
Root mean square distance

\[d = \sqrt{\frac{1}{n} \sum_i d(p_i', s_i')^2} \]

\[= \sqrt{\frac{1}{n} \sum_i (U \cdot p_i + t - s_i')^2} \]

- \(U \) 3x3 rotation matrix, i.e., orthonormal
- \(t \) translation vector

Objective: find \(U \) and \(t \) such that \(d \) is minimal
we observe: t and U are independent

- with the partial derivative of d according t

$$\frac{\partial d}{\partial t} = 2 \cdot \sum_i (U \cdot p_i + t - s'_i) = 2U \sum_i p_i + 2nt - 2 \sum_i s'_i$$

we obtain

$$t = -U \frac{1}{n} \sum_i p_i + \frac{1}{n} \sum_i s'_i$$

$$= -U \cdot p_c + s'_c$$

- where p_c and s'_c are the centroids of both sets
with the above, \(d \) can be written as

\[
d = \sqrt{\frac{1}{n} \sum_i (U \cdot p_i + t - s'_i)^2}
\]

\[
= \sqrt{\frac{1}{n} \sum_i (U \cdot (p_i - p_c) - (s'_i - s'_c))^2}
\]

where \(U \) is a matrix with restrictions (has to be orthonormal)
one converts the problem with restrictions
with the help of LAGRANGE multiplies into
a problem without restrictions
which exhibits the same extremal points
Let's skip the details

- basically, we calculate first and second derivative according to the entries u_{ij} of U
- we search for the extremal points
- KABSCCH algorithm 1976, 1978
- open source code at my home page
KABSCH algorithm

- let \(S \) be the matrix of rows containing the \(s_i' \)
- let \(P \) be the matrix of rows containing the \(p_i \)
- we compute \(R = S \cdot P^T \)
- we set \(A = [a_0 \ a_1 \ a_2] \) with \(a_k \) being the eigenvectors of \(R^T R \)
- we compute \(B = [\|Ra_0\| \ \|Ra_1\| \ \|Ra_2\|] \)
- and finally, we get \(U = B \cdot A^T \)
Introduction of scaling

- let us introduce a scaling value $\sigma \in \mathbb{R}$

$$d = \sqrt{\frac{1}{n} \sum_{i} (\sigma U \cdot (p_i - p_c) - (s'_i - s'_c))^2}$$

- let $p''_i = U \cdot (p_i - p_c)$ be the translated and rotated point p_i

- let $s''_i = s'_i - s'_c$ be the centralized point s'_i

- the solution for the optimal σ: $\sigma = \frac{\sum_{i} \langle s''_i, p''_i \rangle}{\sum_{i} \langle p''_i, p''_i \rangle}$
Different distance measures—different alignments

AVG

MAX

RMS
Optimal transformations for non–derivable distance measures

- if the function for d is not derivable, e.g., the average
- we use a gradient free optimization method (only with evaluations of the function)
- recently developed iterative method that is guaranteed to converge towards a local minimum
- algorithm of Rodríguez/García–Palomares (2002)
Idea behind RODRIGUEZ/GARCIA–PALOMARES

- let $f(x)$ be the function to be minimized
- we iterate contracting and expanding adequately parameters $h^k > 0$ and $\tau > 0$ such that
 \[f(x_{i+1}) = f(x_i \pm h^k d_k) \leq f(x_i) - \tau^2 \]
- where d_k is a direction taken from a finite set of directions (which depends on the point x_i)
- with $\tau \to 0$, x_i converges to local optimum (while there are no constraints)
a rotation $U \cdot p$ of the point p with the matrix U can be expressed as

$q \star \bar{p} \star q^{-1}$ in quaternion space \mathbb{H}

(HAMILTON formula, $\mathbb{C} \sim \mathbb{R}^2$, $\mathbb{H} \sim \mathbb{R}^4$)

where $\bar{p} = (0, p)$ is the canonical quaternion of the point p

and $q = (\sin(\varphi/2), \cos(\varphi/2)u)$ is the rotation quaternion (with $u \in \mathbb{R}^3$ being the axis and φ the angle of rotation)

instead of U with 9 constraint variables we have u and φ, i.e., 4 unconstraint variables
1. maximal clique detection within the graph of compatible distances
2. geometric hashing of the pattern
3. distance geometry
Maximal clique detection

- we generate a graph $G = (V, E)$ (graph of compatible distances)
- vertices $v_{ij} \in V$ all pairs (p_i, s_j)
- edges $e = (v_{ij}, v_{kl}) \in E$, if $d(p_i, p_k) \approx d(s_j, s_l)$
- search for maximum cliques in G
the problem is NP–complete
(however, we search only for cliques of size \(\leq k \))

fast algorithms need adjacency matrices

if \(n = |S| = 5000 \) and \(k = |P| = 100 \) we need 30 GByte
(counting only one bit per edge)
preprocessing of the search space

let’s describe the two–dimensional case

- we align each pair \((s_i, s_j)\)
 with \(s_i\) at the origin and \(s_j\) in direction \(x\)
- we insert some information for each other point \(s_k \in S\)
 in a hashtable defined on a grid over \(S\)
Example: geometric hashing

first insertion

second insertion
we simulate an insertion of the points of P into the hashtable
but we count only the non–empty entries
many votes reveal candidates for partial alignments
e.g., if we encounter a pair (p_i, p_j) such that
for each other point of the pattern there is a non–empty cell in the hashtable
we have found a perfect candidate
Properties of geometric hashing

- grid size must be selected beforehand
- preprocessing time $O(n^{d+1})$
- searching time $O(k^{d+1})$
- works only for rigid motion transformations
we represent both sets S and P as distance graphs
the vertices of the graphs are the points of the sets
the edges of the graphs hold the distances between the corresponding vertices
e.g., $G_P = (P, P \times P)$ complete graph
The ideas behind psm

- we define adequate distance graphs G_P and G_S
- we search for subgraphs G'_S of G_S that are congruent to the graph G_P (allowing certain tolerances)
- we optimally align G_P with the subgraphs of G'_S
- we select the best one among all hits
- we extend the search to work with subgraphs of G_P as well
- we select a best subgraph as final solution
The four main steps of psm

- construction of the graphs
 with: exploitation of locality properties

- search of subgraphs
 with: sophisticated backtracking

- alignment
 with: minimization of cost functions

- search of partial patterns
 with: reactive tabu search
Construction of the graphs

- let us assume that the pattern P is small
- we construct G_P as the complete graph
- we generate a dictionary D
 (ordered data structure)
 that contains all distances (intervals) between points in P
- we consider an edge between two vertices in G_S
 if the distance is present in the dictionary D
Construction of the dictionary

- let $d_{ij} = d(p_i, p_j)$ be the distance between two points of P
- the dictionary will contain the interval

\[[(1 - \varepsilon) \cdot d_{ij}, \frac{1 + \varepsilon}{(1 - \varepsilon)} \cdot d_{ij}] \in D \]

where $0 \leq \varepsilon < 1$ is an appropriate tolerance
- the upper limit can be simplified to $(1 + \varepsilon)$ (but we lose the symmetry)
- we can join intervals in the dictionary D if they intersect
Construction of the graphs that way

G_P G_S
Fast construction of the graphs

- we construct G_P as a connected (and rigid) graph maintaining only the short edges
- we order the points of S previously in a grid of size similar to the largest of the intervals
Construction of the graphs that way

G_P G_S
let us assume (at the beginning) that G_P is a complete graph

we order the points of G_P according to any order e.g. (p_0, \ldots, p_{k-1})

we apply a backtracking algorithm that tries to encounter for each p_i a partner s_i following the established ordering

hence:
Backtracking for the search

- let us assume that we already found a subgraph G_{s_0,\ldots,s_i} where the graph G_{p_0,\ldots,p_i} can be matched
- we look for candidates s_{i+1} for the next point p_{i+1}
 - that must be neighbors of the point s_i within G_S
 - that must not be matched already and
 - that have similar distances to the s_j ($j \leq i$) as the p_{i+1} to the p_j ($j \leq i$)
- while there is a candidate we advance with i
- if there are no more candidates for s_{i+1}, s_i cannot be a partner for p_i neither (i.e.: backtracking)
Termination of the algorithm

- the algorithm *informs* each time a candidate for p_{k-1} has been found
- the algorithm terminates when
 - there are no more candidates for p_0 or
 - the first solution has been found
Optimizations of the basic algorithm

- Reduction of the edges in G_P implies: reduction of the edges in G_S
- Good ordering of the p_i implies: reduction of the number of candidates
- Consideration of the type of point (e.g., element type of the atom) implies: reduction of the number of candidates
- All heuristics imply: the backtracking advances faster
Search for partial alignments

- find the subset of the points of the pattern that can be matched best to some points in the search space
- NP–complete
- there are $|\mathcal{P}(P)| = 2^k$ possibilities to choose a subset
- we apply:
 - genetic algorithm
 - reactive tabu search
Genetic Algorithm

- maintain graph G_S as complete graph
- genome: sequence of bits indicating if a point belongs to the actual pattern or not
- crossover: *two point crossover*
- mutation: *flip*
- selection: roulette wheel
- cost function: distance and size of alignment
Termination of the GA

- it is not that easy
- once the first solution has been found
- once a sufficiently good solution has been found
- after a certain number of iterations
- once diversity of population is too low
Problems with GA

- G_S must be a complete graph
 - ¿You know a crossover operation for non-complete graphs?
- more precisely:
 - we need a crossover (and mutation) operation that maintains a specific property of the graphs (e.g., connectivity, rigidness)
Reactive Tabu Search

- we start with an admissible solution
- we search for possibilities to improve the current solution
 - if we can: we choose one randomly
 - if we cannot:
 - we search for possibilities to reduce the current solution
 - if we can: we again try improvements
 - if we cannot: we jump to another admissible solution
The Tabu criterion

- we avoid repetitive movements taking advantage of a memory that stores intermediate solutions
- i.e.: we mark certain movements as tabu for a certain number of iterations
- reactive means: we adapt the tabu period dynamically
Quality of a partial alignment

- evaluation of the cost of a solution: number of aligned points plus quality of the alignment
- remember: quality $Q \in]0, 1]$, but we will use $Q \geq$ threshold
- hence, maximal quality: $|P| + 1$
Reactive Tabu Search for \textit{psm}

- representation of the problem: sets of indices of the matched points
- search for candidates to improve (\textit{add}): (rigidly) connected neighbors within graph G_S
- search for candidates to reduce (\textit{drop}): any point of the current solution that maintains the graph G_S connected (and rigid)
¿When do we terminate?

- not that simple
- once we found a sufficiently good solution
- once we have run a certain number of iterations
Search for the largest common pattern

\[P \]

\[S \]
Search for the largest common pattern

p/P

p/S
Search for the largest common pattern
Search for pattern with deformation

- instead of the complete graph use a connected sparse graph
- parts of the graph could be rigid
- the graph may specify hinges or torsion axis
- command line tool with configuration file
- GUI
- web–site to perform searches
almost 13,000 specific lines of C++
uses the libraries:
- Leda (library of efficient data structures and algorithms)
- gsl (Gnu scientific library)
- GAlib (genetic algorithms, MIT)
- Gtkmm (graphical user interface)
- own libraries
Software
newer version

- almost 11,000 specific lines of C++
- uses the libraries:
 - mtl (*matrix template library*)
 - Gtkmm (graphical user interface)
 - own libraries
Possible extensions

- enumerate more rigorously all locations (up to now we have concentrated on the best solution)
- extend the properties of the graphs defining deformations of the pattern (e.g. torsion of parts, restriction of angles)
- allow local tolerances (e.g. per edge)
- improve the user interface
- more applications
Optimization of wireless UMTS networks
Joint work with

- Fernando Aguado
 Departamento de Teoría de la Señal
 Universidad de Vigo

- Luis Mendo
 Universidad Politécnica de Madrid
Objectives

- given a set of possible nodes B (base stations)
- find optimal subset
- to guarantee certain services (bandwidth)
- to an estimated user distribution
Principal algorithm

LOAD
GENERATE
COMPUTE
ASSIGNMENT
Downlink
Uplink
static user distribution
path loss
UMTS settings
terrain data
node B locations
traffic description
best set B−nodes
assignment

GA
 COMPUTE
 ASSIGNMENT
 Uplink
 Downlink

HBB
 best set B−nodes
 assignment
 best set B−nodes
Cartography of Madrid
Calculation of attenuation matrix α

- simple logarithmic decay
 \[
 L(m, k) = 10^{0.1 \cdot (32.2 + 35.1 \cdot \log(d(m,k)))}
 \]
 \[
 \alpha(m, k) = \frac{G_{\text{eff}}(m) \cdot G_{\text{eff}}(k)}{L(m, k)}
 \]

- simplified Xia model
- mixed model: close—Xia, far—simple
Coverage around a node B
Traffic distribution

- static distribution
- grid of estimated user with activation percentage
- polygons with Poisson process per service
- uniform distribution everywhere or only on streets
Calculation of SIR

- uplink SIR γ_{UL}:

$$\gamma_{UL}(m, k) = (E_b/N_0)_{UL} \cdot b_0(k)/B_0$$

- downlink SIR γ_{DL}:

$$\gamma_{DL}(m, k) = (E_b/N_0)_{DL} \cdot b_0(k)/B_0$$
Calculation of noise

- uplink noise $N_T(m)$ at transmitter m:

$$F(m) = 10^{0.1 \cdot N^F(m)}$$

$$N(m) = k_B \cdot T_{amb} \cdot B_0 \cdot F(m)$$

- downlink noise $N_R(k)$ at receiver k:

$$F(k) = 10^{0.1 \cdot N^F(k)}$$

$$N(k) = k_B \cdot T_{amb} \cdot B_0 \cdot F(k)$$
Calculation of power (Hanly and Mendo)

- initial power $P_0(k)$ for receiver k:

\[
t_0(m, k) = \frac{\gamma_{UL}(m, k)}{\alpha(m, k)} \cdot N(m) \quad P_0(k) = \min_m \{ t(m, k) \}
\]

- power $P_i(k)$ for receiver k in iteration i:

\[
s_i = P_{i-1} \cdot \alpha(m)
\]

\[
t_i(m, k) = \frac{\gamma_{UL}(m, k)}{\alpha(m, k)} \cdot ((s_i - P_{i-1}(k) \cdot \alpha(m, k)) \cdot a(k) + N(m))
\]

\[
P_i(k) = \min_m \{ t_i(m, k) \}
\]
Termination criteria for iteration

\[\exists k \text{ with } P(k) > P_{\text{max}}(k) \implies \text{no assignment} \]
\[i > I_{\text{max}} \implies \text{no assignment} \]
\[\max_k \left\{ \frac{P_i(k)}{P_{i-1}(k)}, \frac{P_{i-1}(k)}{P_i(k)} \right\} \leq \Delta \implies \text{assignment possible} \]
Calculation of assignment

\[A(k) = m \text{ with } t(m, k) = \min_m \{ t(m, k) \} \]

\[P(k) = \min_m \{ t(m, k) \} \]
Validation of assignment

- uplink:

\[P_{\text{min}}(k) \leq P(k) \leq P_{\text{max}}(k) \]
downlink:

$$\beta(n, k, m) = \begin{cases}
\rho(m, k) & \text{if } m = n \\
1 & \text{otherwise}
\end{cases}$$

calculation of SSIR $\tilde{\gamma}$:

$$\tilde{\gamma}(m, k) = \frac{\gamma_{DL}(m, k)}{1 + \rho(m, k) \cdot \gamma_{DL}(m, k)}$$
System to solve for transmitter power calculation

\[H(m, n) = \delta_{m,n} - \sum_{k \in A^{-1}(m)} \frac{\alpha(n, k) \cdot \beta(n, k, m) \cdot \tilde{\gamma}(m, k)}{\alpha(m, k)} \]

\[\nu(m) = P_{\text{plt}}(m) + \sum_{k \in A^{-1}(m)} \frac{\tilde{\gamma}(m, k) \cdot N(k)}{\alpha(m, k)} \]

\[H \cdot T = \nu \]
Validation of power restrictions

- validation of maximum power of transmitter m:

\[0 < T(m) \leq T_{\text{max}}(m) \]
Validation of power restrictions

- calculation of downlink power of receiver k:

\[
P(k) = \frac{\tilde{\gamma}(m, k)}{\alpha(A(k), k)} \left(\sum_{m=1}^{M} \alpha(m, k) \cdot \beta(m, k, A(k)) \cdot T(m) + N(k) \right)
\]

- validation of transmitter maximum channel power:

\[
P(k) \leq P_{\text{chn}}
\]
Observation:

- if there is no assignment with certain m nodes B
- then there is no assignment with less nodes B

hence

- start with all nodes B
- eliminate nodes B til optimum found with branch&bound
Termination with heuristic backtracking

- stop if stagnation occurs
 (if within a subtree all minimum solutions are at the same depth)
- finds optimum solution
ordering of nodes B plays an important role in finding fast good solutions
reorder nodes B for backtracking according to heuristics
for instance: eccentricity, random, number of initial connections, etc.
Optimization with genetic algorithm (GA)

- steady-state incremental evolution (in each iteration two new descendents are generated)
- selection: roulette wheel
- mutation: flip
- crossover: two–point–cyclic
- quality: number of nodes B plus power as tiebreak
Genom generation I

- matrix representation of nodes B
- exploiting locality properties
- using allele: usable, unusable, used, fixed
Genom generation III
Crossover I

father

son

mother

daughter
Crossover II

father

mother

son

daughter
Evolution

Start population?

Descendants

Parents

Quality

Population (constant)
Assignment and heuristic branch result
GA results with and without downlink
Software

- almost 22,000 specific lines of C++
- uses the libraries:
 - Leda (*library of efficient data structures and algorithms*)
 - GAlib (genetic algorithms, MIT)
 - own libraries
Further research and implementations

- use of MonteCarlo method
- to find best subset of nodes B
- for several user distributions
- i.e., find best subset to satisfy different scenarios
Approximation of point sets with shapes
Informal problem description

- given a set of points in the plane
- construct a geometric figure interpolating the sample points
- that reasonably capture the shape of the point set
Applications

- pattern recognition
- object definition in geographic information systems
- CAD/CAM services
- vectorization tasks
- curve reconstruction in image analysis
- single–computation pose estimation
- geometric indexing into pictorial databases
- shape tracking etc.
Example
point set
Example

initial shapes
Example
adapted shapes
Approximation task

Three steps:

- clustering of the points to identify the individual parts of a set of shapes,
- generating of an initial guess of the individual shapes,
- adapting the individual shapes to the underlying point set according to some distance metric.
Brain storming

distances, metrics, optimization, local and global minima, discrete–continuous, partially plain functions, multi-objective optimization, local decisions, multi–scale, simplification, VORONOI–diagram, DELAUNAY–diagram, graph analysis, similarity detection, classification (with and without supervision), filtering
Polygonal approximation

type of clustering

- Given a set of points of a plane curve,
- construct a polygonal structure
- interpolating the sample points
- that reasonably captures the shape of the point set.
Three approaches for polygonal approximation

- α-shapes
- crust
- curve approximation
The algorithm is able to detect
- the outer boundary of a set of points
- which covers more or less evenly distributed the interior of a shape.
Alpha–shapes
algorithm

- Compute the DELAUNAY triangulation of the point set.
- Eliminate all triangles of the resulting graph which have a radius larger than \(\alpha \) times the minimum radius.
- The final shape is given by the outer edges of the remaining graph.
VORONOI–diagram
VORONOI–diagram with more points
Alpha–shapes

Example
Alpha–shapes

short comings

- Need of suitable alpha.
- Alpha is constant over the entire point set.
- Interior points needed.
The algorithm is able to reconstruct

- a curve
- that is sampled sufficiently dense
- especially smooth curves, i.e., possibly many component curves without branches, endpoints, or self–intersections.
The crust

- is the set of edges
- selected from the Delaunay triangulation of the initial point set
- extended by its Voronoi points
- where both endpoints of the edges belong to the initial set.
Curve reconstruction algorithm

- Computes the GABRIEL graph as a subgraph of the Delaunay graph
- (an edge between two input points belongs to the Gabriel graph if a disk with this edge as diameter does not contain any other input point).
- Eliminate the edges which do not fulfill the local granularity property,
- i.e., at each point only the two shortest edges are maintained.
The method works well if there exists a regular interpolant, that is, a polygonal closed curve such that the local granularity, defined as minimum distance to an input point, at each point of the curve is strictly smaller than the local thickness at that point, defined as the distance to the medial axis of the shape.
Skeleton
Skeleton

(a) Planar Shape

(b) Polygonal Approximation

(c) Voronoi Diagram

(d) Pruned Skeleton
Simplification problem

objective

- Given polygonal chain (or polygon) \(P \) (with \(n \) vertices),
- approximate \(P \) by another one \(Q \) whose vertices are a subset of \(k \) vertices of \(P \).
Simplification problem

two variants

- **min–# problem**: minimize the number of vertices of an approximating polygonal chain (or closed polygon) with the error within a given bound;

- **min–ε problem**: minimize the error of an approximating polygonal chain (or closed polygon) consisting of a given number of vertices.
Both problems can be solved in optimal time $O(n^2)$.

There exist near–optimal algorithms for solving the min–# problem for the Euclidean distance which for practical problems outperform the optimal algorithms.

There exist a genetic algorithm to cope with the min–# problem which found near optimal solutions in the presented experiments.
A shape S is defined by a number of points and certain parameters:

- line: a point $L \in \mathbb{R}^2$ and an angle $\varphi \in \mathbb{R}$;
- circumference: a center point $C \in \mathbb{R}^2$ and a radius $\varrho \in \mathbb{R}$;
- set of circumferences: set of pairs of center points and corresponding radii, i.e., $(C, R) \subset \mathbb{R}^2 \times \mathbb{R}$;
- polyline or polygon: an ordered set of corner points $Q = \{Q_1, Q_2, \ldots, Q_k\}$, $Q_j \in \mathbb{R}^2$, $j = 1, \ldots, k$, where the only difference between the two shapes is that for a polygon the last and first corner are connected;
- rounded box: a line segment defined by two points $Q_1, Q_2 \in \mathbb{R}^2$, an aspect ratio $\alpha \in \mathbb{R}$, and a corner radius $\varrho \in \mathbb{R}$.
distance functions: point—shape I

- line

\[\delta_{L_2}(P_i, S) = \left| \det(P_i - L, (\cos \varphi, \sin \varphi)^T) \right| \]

- circumference

\[\delta_{L_2}(P_i, S) = \left| \|P_i - C\| - \varrho \right| \]

- set of circumferences

\[\delta_{L_2}(P_i, S) = \min_{(C_j, \varrho_j) \in (C, \mathcal{R})} \left| \|P_i - C_j\| - \varrho_j \right| \]
polyline or polygon, first we need the distance for a segment $QQ_j = Q_{j+1} - Q_j$:

$$\delta_{L2}(P_i, \overline{QQ_j}) =$$

$$\begin{cases}
\|P_i - Q_j\| & \text{if } (P_i - Q_j)^T \overline{QQ_j} < 0 \\
\|P_i - Q_{j+1}\| & \text{if } (P_i - Q_{j+1})^T \overline{QQ_j} > 0 \\
\left| \frac{\text{Det}(\overline{QQ_j}, P_i - Q_j)}{\|QQ_j\|} \right| & \text{otherwise}
\end{cases}$$

and obtain for a polyline or polygon

$$\delta_{L2}(P_i, S) = \min_{Q_j \in Q} \delta_{L2}(P_i, \overline{QQ_j})$$

where for a polyline the index j runs from $1, \ldots, k - 1$ and for a polygon from $1, \ldots, k$ with $Q_{k+1} = Q_1$.
rounded box

\[
\delta_{L^2}(P_i, S) = \left| \min_{j=1, \ldots, 4} \delta_{L^2}(P_i, \overline{QQ_j}) \pm \varrho \right|
\]

where \(Q_3 = Q_2 + \alpha Q_{12}^\top \) and \(Q_4 = Q_1 + \alpha Q_{12}^\top \) being \(Q_{12}^\top \) the left turned perpendicular vector to \(Q_2 - Q_1 \) of same length. \(+\varrho \) is taken when the point \(P_i \) lies inside the rectangular box through \(Q_1, \ldots, Q_4 \), and \(-\varrho \) when \(P_i \) lies outside.
shaprox

distance functions: non–euclidean

- vertical distance to a line:
 \[\delta_V(P_i, S) = \left| P_i^2 - L^2 - (P_i^1 - L^1) \cdot \frac{\sin \varphi}{\cos \varphi} \right| \]

- length of the segments could have an influence as a weight
 \[\delta_{wL_2}(P_i, \overline{QQ_j}) = \left| \text{Det}(\overline{QQ_j}, P_i - Q_j) \right| \]
distance functions: point set—shape

- **RMS**

 \[
 \delta_{\text{RMS}, L_2}(\mathcal{P}, S) = \sqrt{\frac{1}{I} \sum_{P_i \in \mathcal{P}} \delta_{L_2}(P_i, S)^2}
 \]

- **AVG**

 \[
 \delta_{\text{AVG}, L_2}(\mathcal{P}, S) = \frac{1}{I} \sum_{P_i \in \mathcal{P}} \delta_{L_2}(P_i, S)
 \]

- **MAX**

 \[
 \delta_{\text{MAX}, L_2}(\mathcal{P}, S) = \max_{P_i \in \mathcal{P}} \delta_{L_2}(P_i, S)
 \]

- or \(\delta_{\text{RMS}, V}(\mathcal{P}, S)\) or \(\delta_{\text{AVG}, L_1}(\mathcal{P}, S)\), etc
Algorithm of Rodríguez/García–Palomares

derivative–free minimization method

proved convergence for either locally strictly differentiable or non–smooth locally convex functions.
Till now concentrated on the minimization of a single function.

However, in our optimization problem, it can happen that there is no change in the value of the distance function although the shape is modified.
Example: Subsidiary objective
Minimize perimeter as well.
Subsidiary objective: possible solution

- Formulate a convex combination of all objectives,
- i.e., optimize the single–objective function

\[f(x) = \beta_1 f_1(x) + \beta_2 f_2(x) + \cdots + \beta_l f_l(x) \]

where the \(\beta_j > 0 \), for \(j = 1, \ldots, l \), are strictly positive weights,
- \(f_j(\cdot) : \mathbb{R}^n \rightarrow \mathbb{R} \) are the individual objective functions.
Subsidiary objective: short coming of possible solution

- Explores the Pareto front defined by the weights β_j,
- it might be difficult to find weights such that the encountered minimum is sufficiently close to the minimum considering only the principal objective $f_1(\cdot)$.
Example: convex combination as objective function
Subsidiary objective: better solution

- modify the comparison $f(z) \leq f(x) - \tau^2$ (in the local search algorithm)
- with the following iteratively defined comparison function for l objectives:

\[
[f_1(z), \ldots, f_l(z)] \leq_{\tau^2} [f_1(x), \ldots, f_l(x)] \iff \\
\forall j = 1, \ldots, l : f_j(z) \leq f_j(x) - \tau^2 \text{ or } \\
(j < l \text{ and } f_j(z) \leq f_j(x) \text{ and } f_{j+1}(z) \leq f_{j+1}(x) - \tau^2)
\]
NP–Completeness and non–convexity of the objective function
shaprox

Examples: wedge
shaprox
Examples: simple polygon
shaprox

Examples: convex hull
shaprox

Examples: circumferences
Examples: influence of metrics
shaprox

Examples: completing shapes
Examples: rounded rectangle
more than 7,000 specific lines of C++ uses the libraries:

- ImageMagick
- Gtkmm (graphical user interface)
- own libraries
shaprox
¿Questions?
¡Many thanks!