

Preguntas y respuestas

para la evaluación continua 2008/2009

Dr. Arno Formella
Universidad de Vigo
Departamento de Informática
Área de Lenguajes y Sistemas Informáticos
E-32004 Ourense

http://www.ei.uvigo.es/~formella
formella@ei.uvigo.es

9 de junio de 2009

Índice

1.	Explicaciones	3
2.	Hoja 1 (17 de Febrero de 2009)	4
3.	Hoja 2 (03 de Marzo de 2009)	5
4.	Hoja 3 (10 de Marzo de 2009)	7
5.	Hoja 4 (17 de Marzo de 2009)	8
6.	Hoja 5 (24 de Marzo de 2009)	9
7.	Hoja 6 (31 de Marzo de 2009)	10
8.	Hoja 7 (21 de Abril de 2009)	11
9.	Hoja 8 (05 de Mayo de 2009)	13
10	. Hoja 9 (12 de Mayo de 2009)	14
11	. Hoja 10 (19 de Mayo de 2009)	15
12	. Hoja 11 (26 de Mayo de 2009)	18

1. Explicaciones

- Habrá 12 hojas.
- Los nuevos problemas se distribuen los martes.
- Las entregas se realizan de forma personal el siguiente martes con clases presenciales.
- Una entrega consiste en **una hoja** escrito **a mano** (es decir, ni impreso ni copia) personalmente.
- No hay excepciones para dicha forma de entrega.
- No se publican los resultados/correcciones individuales, sino se publica una posible solución correcta.
- El alumno debe autoevaluarse con las soluciones publicadas, la copia de la entrega guardada y mejor en grupo de compañeros.
- Tres de las doce entregas se seleccionarán al azar para su incorporación en el proceso de evaluación final de la asignatura (mira Guía Docente).

2. Hoja 1 (17 de Febrero de 2009)

P1: Enumera 3 situaciones en el contexto de la informática dónde crees el uso de lenguajes formales y sus autómatas correspondientes es "útil".

R1:

- Verificación de la sintaxis correcta de cadenas de símbolos (p.ej.: direcciones de correo electrónico, numeros "reales" en programas, ficheros HTML o XML).
- Desarrollo de algoritmos (p.ej.: algoritmo para la búsqueda de una palabra (con o sin "comodines") en un texto)
- Especificaciones de entradas/ficheros válidas.
- Comprobación si un problema es "computable" o no lo es.
- Verificación de sistemas basados en estados (p.ej.: un semáforo en un cruce).

P2: Comprueba/contradice: $\epsilon \in L^+$ si y solo si $\epsilon \in L$ (siendo L un lenguaje).

R2: Es verdad. Comprobamos (las dos direcciones):

- 1. Si $\epsilon \in L$ entonces $\epsilon \in L^+$ dado que $L = L^1 \subset L^+$ (según definición).
- 2. Si $\epsilon \in L^+$ entonces ϵ está en uno de los L^i ($i \geq 1$). Si i=1 entonces $\epsilon \in L^1=L$ y ya está. Asumimos i>1, entonces sea i el indice más pequeño tal que $\epsilon \in L^i$. Con $L^i=L^{i-1}.L$ tiene que existir una palabra $w \in L^{i-1}$ diferente a ϵ (porque hemos dicho i es mínimo), a la cual añadimos algo para obtener ϵ . Eso es imposible, entonces i no puede ser mayor que i.

P3: Comprueba/contradice: $L^+ = L^*$ si y solo si $\epsilon \in L$ (siendo L un lenguaje).

R3: Es verdad. Comprobamos (las dos direcciones):

- 1. Si $\epsilon \in L$ entonces $L^0 = \{\epsilon\} \subset L$, luego $L \subset L^+$ (por definición), con eso $L^0 \subset L^+$, entonces $L^* = L^+ \cup L^0 = L^+$ (el primer = por definición).
- 2. Si $L^+ = L^*$, entonces $\epsilon \in L^+$ dado que $\epsilon \in L^*$ (recordar $\{\epsilon\} = L^0 \subset L^*$ según definición). Entonces, según **R2**, $\epsilon \in L$.

3. Hoja 2 (03 de Marzo de 2009)

P1: Sea $N = \{0, 1, 2, 3, 4, 5, 6, 7\}$ un conjunto (de digitos), y sea

$$R = \{(0,3), (1,4), (2,0), (3,1), (4,2), (5,6), (6,7)\} \subset N \times N$$

una relación sobre N.

- Construye las relaciones R^i para todos los $i = 0, ..., \infty$.
- Construye la relacion R^* .
- Argumenta si R^* es reflexiva, simétrica, y/o transitiva.
- ¿Cuál pareja deberíamos añadir a la relación R para que R^* sea simétrica (si piensas que R^* no es simétrica en el apartado anterior).

R1:

• Los conjuntos R^i son:

 $R^n = R^{(n-3) \bmod 5+3}$

$$R^{0} = \{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7)\}$$
(1)
$$R^{1} = \{(0,3), (1,4), (2,0), (3,1), (4,2), (5,6), (6,7)\}$$
(2)
$$R^{2} = \{(0,1), (1,2), (2,3), (3,4), (4,0), (5,7)\}$$
(3)
$$R^{3} = \{(0,4), (1,0), (2,1), (3,2), (4,3)\}$$
(4)
$$R^{4} = \{(0,2), (1,3), (2,4), (3,0), (4,1)\}$$
(5)
$$R^{5} = \{(0,0), (1,1), (2,2), (3,3), (4,4)\}$$
(6)
$$R^{6} = \{(0,3), (1,4), (2,0), (3,1), (4,2)\}$$
(7)
$$R^{7} = \{(0,1), (1,2), (2,3), (3,4), (4,0)\}$$
(8)
$$para n > 7$$

$$R^{8} = R^{3}$$
(9)
$$R^{9} = R^{4}$$
(10)
$$R^{10} = R^{5}$$
(11)
$$R^{11} = R^{6}$$
(12)
$$R^{12} = R^{7}$$
(13)
$$es \ decir$$

(14)

• El conjunto R^* es (basta con unir hasta R^7):

$$R^* = \{(0,0), (0,1), (0,2), (0,3), (0,4), (1,0), (1,1), (1,2), (1,3), (1,4), (2,0), (2,1), (2,2), (2,3), (2,4), (3,0), (3,1), (3,2), (3,3), (3,4), (4,0), (4,1), (4,2), (4,3), (4,4), (5,5), (5,5), (5,7), (6,6), (6,7), (7,7)\}$$

$$(15)$$

- reflexiva: sí, dado que R⁰ ⊂ R*
 simétrica: no, dado que (5,7) ∈ R* pero (7,5) ∉ R*
 transitiva: sí, por construcción.
- Se añade (7,5) y se verifica fácilmente que

$$R^* = \{(0,0), (0,1), (0,2), (0,3), (0,4), \\ (1,0), (1,1), (1,2), (1,3), (1,4), \\ (2,0), (2,1), (2,2), (2,3), (2,4), \\ (3,0), (3,1), (3,2), (3,3), (3,4), \\ (4,0), (4,1), (4,2), (4,3), (4,4), \\ (5,5), (5,6), (5,7), \\ (6,5), (6,6), (6,7), \\ (7,5), (7,6), (7,7)\}$$

$$(16)$$

4. Hoja 3 (10 de Marzo de 2009)

P1: Construye una gramática G que genera el lenguaje

$$L = \{a^ib^jc^kd^l \mid (i=j \ \mathbf{y} \ k=l) \ \mathbf{6} \ (i=l \ \mathbf{y} \ j=k); i,j,k,l \geq 0\}$$

ejemplos de palabra que pertenecen a L:

aabbcccddd, abcd, aaabbccddd, aaaabbbb, cccddd

R1: una posible solución

$$\begin{split} G &= & (\{\$,A,B,C,D\}, \{a,b,c,d\}, \\ &\{\$ \longrightarrow \epsilon \mid AB \mid aCd \mid bDc, \\ &A \longrightarrow \epsilon \mid aAb, B \longrightarrow \epsilon \mid cBd, \\ &C \longrightarrow \epsilon \mid aCd \mid bDc, D \longrightarrow \epsilon \mid bDc\}, \$) \end{split}$$

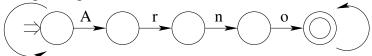
5. Hoja 4 (17 de Marzo de 2009)

P1: Si un autómata acepta la palabra ϵ , entonces el estado inicial es un estado final. ¿Es verdad?

R1: Depende: para los AFD y AFND, vistos hasta ahora en clase, es verdad; si permitimos transiciones ϵ no lo es. Miramos los AFD y los AFND: obviamente si el estado inicial es un estado final, tal autómata acepta ϵ , y al revés, si el estado inicial no es un estado final, entonces no acepta ϵ , dado que $\delta^*(q_0, \epsilon) = q_0$.

P2: Construye un autómata finito que acepta un texto (que no es nada más que una palabra larga sobre algún alfabeto) si en él aparece tu nombre.

R2: Asumimos un alfabeto adecuado, p.ej. los caracteres imprimibles de la tabla del código ASCII. Un AFND que acepta el nombre "Arno" sería:



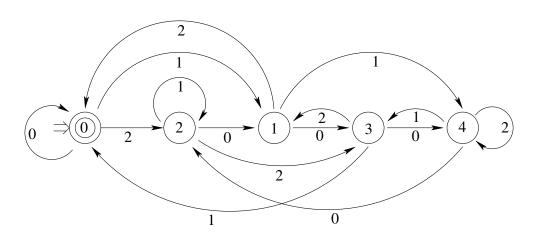
todos los simbolos

todos los simbolos

6. Hoja 5 (24 de Marzo de 2009)

P1: Construye una autómata finito determinista (AFD) que acepta todas las palabras w sobre el alfabeto $\{0,1,2\}$ que son divisibles por 5 si se interpreta w como un número en la base 3.

R1:



7. Hoja 6 (31 de Marzo de 2009)

P1:

Convierte el autómata del examen de TALF de Junio 2008 en su pregunta 1 en un autómata finito determinista. Incluye en tu solución las tablas tal como lo vimos en clase.

(Sugerencia: aprovecha de la Semana Santa para realizar más ejercicios de antiguos exámenes.)

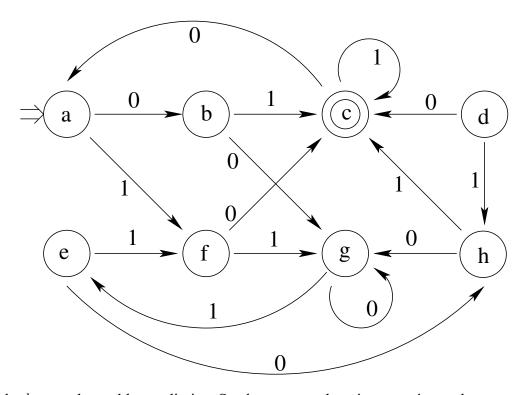
R1:

		a	b	ϵ	cl $-\epsilon$	a	b	a	b
\longrightarrow	0	2	-	1	0,1	2,4	1	2,4,5	1
*	1	4	1	-	1	4	1	2,4,5	1
	2	_	3	5	0,1 1 2,5	-	3,4	_	2,3,4,5
	3	4,5	-	-	3	4,5	-	2.4.5	-
	4	5	-	2	2,4,5	5	3,4	5	2,3,4,5
*	5	_	4	-	5	_	4	_	2,4,5

Dado que 1 (siendo estado final) está en la clausura— ϵ del estado inicial, el estado inicial también se convierte en estado final.

8. Hoja 7 (21 de Abril de 2009)

P1: Minimiza el siguiente autómata finito determinista.



El estado d no es alcanzable, se elimina. Se observa que el autómata está completo.

	$\mid a \mid$	b	c	e	f	g	h
a	-	X_1	X_0		X_2	X_6	X_3
b	-	-	X_0	X_4	X_5	X_6	
c	-	-	-	X_0	X_0	X_0	X_0
e	-	-	-	-	X_7	X_8	X_9
$\int f$	-	-	-	-	-	X_{10}	X_{11}
g	-	-	-	-	-	-	X_{12}
h	-	-	-	-	-	-	ı

pareja	0	1	acción
(a,b)	(b,g)	(f,c)	X_1
(a,e)	(b,h)	(f, f)	(b,h)
(a, f)	(b,c)	(f,g)	X_2
(a,g)	(b,g)	(f,e)	(b,g),(f,e)
(a,h)	(b,g)	(f,c)	X_3
(b,e)	(g,h)	(c, f)	X_4
(b, f)	(g,c)	(c,g)	X_5
(b,g)	(g,g)	(c,e)	$X_6,(a,g)$
(b,h)	(g,g)	(c,c)	
(e,f)	(h,c)	(f,g)	X_7
(e,g)	(h,g)	(f, e)	X_8
(e,h)	(h,g)	(f,c)	X_9
(f,g)	(c,g)	(g,e)	X_{10}
(f,h)	(c,g)	(g,c)	X_{12}

Entonces las parejas (a, e) y (b, h) marcan estados equivalentes.

P2: Minimiza el autómata finito determista de la hoja anterior (Hoja 6).

Renombrando los estados se obtiene la siguiente tabla de un AFD completo y conexo:

	a	b
0	1	2
1	3	4
2	1	2
3	5	1
4	1	4
5	5	5
	3 4	0 1 1 3 2 1 3 5 4 1

	0	1	2	3	4	5
0	-	X_2		X_1		X_0
1	-	-	X_2	X_2	X_3	X_0
2	-	-	-	X_4		X_0
3	-	-	-	-	X_5	X_0
$\overline{4}$	-	-	-	-	-	X_0
5	-	-	-	-	-	-

pareja	a	b	acción
(0,1)	(1,3)	(2,4)	(1,3),(2,4)
(0,2)	(1,1)	(2,2)	_
(0,3)	(1,5)	(2,1)	X_1
(0,4)	(1,1)	(2,4)	(2,4)
(1,2)	(3,1)	(4,2)	(1,3),(2,4)
(1,3)	(3,5)	(4,1)	$X_2, (0,1), (1,2)$
(1,4)	(3,1)	(4,4)	X_3
(2,3)	(1,5)	(2,1)	X_4
(2,4)	(1, 1)	(2,4)	
(3,4)	(5,1)	(1,4)	X_5

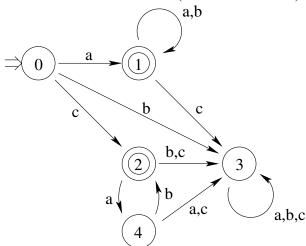
Entonces las parejas (0,2), (2,4), y (0,4) marcan estados equivalentes, es decir, los tres entre si. Y el AFD mínimo es:

9. Hoja 8 (05 de Mayo de 2009)

P1: Construye un AFD mínimo para la siguiente expresión regular: $(a(ba)^*(a+b)^* + c(ab)^*)$ que define un lenguaje sobre $\{a,b,c\}$.

Hay diferentes formas de contestar:

- 1. Se construye un AFND $-\epsilon$ succesivamente según visto en la comprobación que EE.RR. definen lenguajes regulares. Dicho autómata *grande* se convierte en AFND, luego en AFD, (luego en AFD completom sino ya está), y se minimiza.
- 2. Se construye un AFND- ϵ succesivamente según visto en la comprobación que EE.RR. definen lenguajes regulares. Antes de la conversión a AFND, se unifica estados que obviamente son equivalentes. Así el AFND- ϵ se reduce considerablemente.
- 3. Se observa: $(ba)^*(a+b)^* \equiv (a+b)^*$. Con eso: $(a(ba)^*(a+b)^* + c(ab)^*) \equiv (a(a+b)^* + c(ab)^*)$. Y luego se puede construir directamente (en este caso fácil) un AFD completo



del cual se notará que ya es mínimo.

10. Hoja 9 (12 de Mayo de 2009)

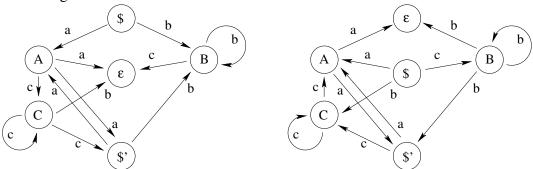
P1: Transforma la siguiente gramática lineal por la derecha en una gramática lineal por la izquierda:

$$G = (\{\$, A, B, C\}, \{a, b, c\}, \{\$ \longrightarrow aA \mid bB, A \longrightarrow a\$ \mid cC \mid a, B \longrightarrow bB \mid c, C \longrightarrow cC \mid c\$ \mid b\}, \$)$$

Sustituimos primero \$ a la derecha:

$$G = (\{\$,\$',A,B,C\}, \{a,b,c\}, \\ \{\$ \longrightarrow aA \mid bB,\$' \longrightarrow aA \mid bB, \\ A \longrightarrow a\$' \mid cC \mid a,B \longrightarrow bB \mid c,C \longrightarrow cC \mid c\$' \mid b\}, \$)$$

Generamos los grafos:



Leemos la gramática:

$$G = (\{\$,\$',A,B,C\}, \{a,b,c\}, \\ \{\$ \longrightarrow Aa \mid Bc \mid Cb,\$' \longrightarrow Cc \mid Aa, \\ A \longrightarrow \$'a \mid a,B \longrightarrow Bb \mid b \mid \$'b,C \longrightarrow Cc \mid Ac\}, \$)$$

11. Hoja 10 (19 de Mayo de 2009)

P1: Transforma la siguiente gramática libre de contexto en forma normal de Chomsky:

$$G = (\{\$, A, B, C, D, E, F\}, \{a, b, c\}, \{\$ \longrightarrow aAb \mid bB \mid DD, A \longrightarrow a\$ \mid cC \mid a, B \longrightarrow bBB \mid c \mid A, C \longrightarrow cC \mid c\$ \mid b \mid DDCa, D \longrightarrow \epsilon \mid Eb, E \longrightarrow Eba \mid Fa, F \longrightarrow AEb\}, \$)$$

Paso 1: Eliminar símbolos inútiles: iteramos sobre el conjunto de variables para encontrar las variables generativas. Las detectamos en el siguiente orden: A, B, C, D, \$. Entonces $N = \{E, F\}$ es el conjunto de variables no—generativas que eliminamos, queda P'_1 :

$$\begin{array}{cccc} \$ & \longrightarrow & aAb \mid bB \mid DD \\ A & \longrightarrow & a\$ \mid cC \mid a \\ B & \longrightarrow & bBB \mid c \mid A \\ C & \longrightarrow & cC \mid c\$ \mid b \mid DDCa \\ D & \longrightarrow & \epsilon \end{array}$$

Todas las restantes variables son accesibles.

Paso 2: Sustituir las constantes para obtener P'_2 :

$$\begin{array}{ccc} W_a & \longrightarrow & a \\ W_b & \longrightarrow & b \\ W_c & \longrightarrow & c \end{array}$$

Paso 3: Confinar a longitud dos para obtener P_3 :

Paso 4: Eliminar producciones nulas: iteramos sobre las variables para detectar aquellas que posiblemente producen ϵ . Las detectamos en el orden reflejado en el conjunto: $E = \{D, \$, C_1\}$ de las cuales D y C_1 solamente generan ϵ , entonces $E_{\epsilon} = \{D, C_1\}$. Notamos que $\$ \in E$, por eso habrá paso 6. Obtenemos P'_4 :

Paso 5: Eliminar producciones unitarias: calculamos la clausura:

$$U_1 = \{(A, W_a), (B, W_c), (B, A), (C, W_b), (C, W_c), (C, C_2)\}$$

$$U_2 = \{(B, W_a)\}$$

$$U_3 = \{\}$$

Obtenemos P_5' (observa que hay que eliminar la variable C_2 que ya no es acesible):

Paso 6: Permitir que se genera ϵ :

La gramática final es (siendo P el sistema de producciones anterior):

$$G = (\{\$, \$', A, B, B_1, C, W_a, W_b, W_c\}, \{a, b, c\}, P, \$)$$

12. Hoja 11 (26 de Mayo de 2009)

P1: Dado la siguiente gramática en forma normal de Greibach:

$$G = (\{\$, A, B, C, D, E\}, \{a, b, c, d\},$$

$$\{\$ \longrightarrow \epsilon \mid aABB \mid aABBC \mid aB \mid aBC \mid cDEE \mid cE,$$

$$A \longrightarrow aAB \mid a,$$

$$B \longrightarrow b,$$

$$C \longrightarrow cDEE \mid cE,$$

$$D \longrightarrow cDE \mid c,$$

$$E \longrightarrow d\}$$

$$, \$)$$

- 1. Construye un autómata finito con pila M que acepta el lenguaje generado por G, es decir, L(M) = L(G).
- 2. Realiza un cálculo del autómata que acepta la palabra *aaabbbccdd* y argumenta por qué el autómata no acepta *abc*.
- 3. ¿Qué lenguaje genera G?
- 1. El autómata finito con pila es:

$$\begin{split} M &= & (\{a,b,c,d\}, \{\$,A,B,C,D,E\}, \{q\}, \delta, q, \$, \emptyset) \\ \delta &: & \delta(q,\epsilon,\$) = \{(q,\epsilon)\} \\ & \delta(q,a,\$) = \{(q,ABB), (q,ABBC), (q,B), (q,BC)\} \\ & \delta(q,c,\$) = \{(q,DEE), (q,E))\} \\ & \delta(q,a,A) = \{(q,AB), (q,\epsilon))\} \\ & \delta(q,b,B) = \{(q,\epsilon)\}\} \\ & \delta(q,c,C) = \{(q,DEE), (q,E))\} \\ & \delta(q,c,C) = \{(q,DEE), (q,\epsilon)\} \\ & \delta(q,d,E) = \{(q,\epsilon)\} \end{split}$$

2.

$$(q, aaabbbccdd, \$) \longmapsto (q, aabbbccdd, ABBC)$$
 $\longmapsto (q, abbbccdd, ABBBC)$
 $\longmapsto (q, bbbccdd, BBBC)$

Observamos porque no existe cálculo para abc:

- La producción $\$ \longrightarrow \epsilon$ no genera abc, obviamente.
- Si generamos una vez una B, tal variable tenemos que sustituir por una b; entonces $\$ \longrightarrow aABB$ y $\$ \longrightarrow aABBC$ nos producen dos b's, y $\$ \longrightarrow aB$ como mucho ab.
- Si generamos una vez una E, tal variable tenemos que sustituir por una d; entonces las producciones $\$ \longrightarrow cDEE$ y $\$ \longrightarrow cE$ nos generan por lo menos una d, y $\$ \longrightarrow aBC$ nos genera via C por lo menos una d.
- Es decir, empezamos como queramos desde \$, siempre llegamos a una contradicción.

3.
$$L(G) = \{a^i b^i c^j d^j \mid i, j \ge 0\}$$