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Local search methods

Local search methods explore the search space by
inspecting (close or far) neighbor solutions.
They stop at a local minimum, i.e., all neighbors are greater
(remind: we are searching for a minimum).
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Local search methods

a classical example is the simplex method for linear
programming

or the Newton method (or Newton-Raphson method)
applied to optimization (here formulated as maximization)
while GradientFobj(xi) > tolerance:
xi=xi-GradientFobj(xi)/SecondDerivativeFobj(xi)

(Take care: should check if eventually really maximum, and
not minimum.)
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Local search methods

Further classic iterative optimization methods for the
minimization of real-valued functions that need gradient
information, are:

Gauss-Newton method
(variation of the Newton-method by using the
Jacobean-matrix instead of the Hessian-matrix)
second derivatives are not required here
gradient descent (or, similarly, steepest decent)
Levenberg-Marquardt methods
(interpolation between Gauss-Newton methods and
gradiant descent)
Nesterov’s method for convex optimization
(with much faster convergence rate compared to gradient
decent)
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Local search methods

Further classic iterative optimization methods for minimization
of real-valued functions that don’t need gradient information,
are:

Nelder-Mead method (heuristic), converges to a stationary
point (minimum, maximum, or saddle, i.e., gradient is zero)
idea: shrink, reflect, and expand a simplex (triangle in 2D),
by evaluating the objective function on corners and faces
(edges in 2D)
García-Palomares method, converges to a local minimum
idea: explore the neighorhood according a random local
spanning coordinate system and proceed at a point that
has been found with a sufficiently steep descent
(otherwise iterate with smaller tolerance)
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Local search for traveling salesperson problem
We have seen already the idea: define a local operation that
changes a given tour into another tour

2-opt move:

3-opt move:

Lin-Kernighan-heuristics (and efficient LKH by Helsgaun) is
a combination of 2-opt, 3-opt, and rare k-opt moves
(recall, still state-of-the-art to solve TSP)
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Use of local search

Observe: local search methods can be used in any other
optimization algorithm in order to (try to) converge to a local
minimum.

That is exactly what LKH (Lin-Kernighan-Helsgaun, the very
good implementation) does. It starts with a tour based on a
minimal spanning tree. However:

Can all tours be reached with 2-opt moves? (when starting
with a certain initial tour) ...still an open question
There are worst case scenarios where the 2-opt heuristics
has exponential runtime until convergence.
What about 3-opt, or k-opt, moves? ...still an open question
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Reactive Tabu Search

start with a feasible solution (e.g., with some heuristics)
search for possibilities to improve the current solution
(e.g., search in the neighborhood)
if we can improve: choose the best one or a random one
if we cannot improve (i.e., trapped at a minimum):

search for possibilities to worsen the current solution
if we can escape: try again improvements
if we cannot escape: jump to another feasible solution
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The Tabu criterion

avoid repetitive movements taking advantage of a memory
that stores forbidden intermediate solutions
(or forbidden specific features of the current neighborhood
search)
i.e., mark certain movements as tabu for a certain number
of iterations, i.e., the memory is volatile!
reactive means that the tabu period is dynamically adapted
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psm: point set match for proteins

A template and graph based method with local search and use
of domain specific knowledge for approximate match.

searching a 3D-structure (34 atoms) in a protein with certain
admitted tolerance
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psm: point set match for proteins

A template and graph based method with local search and use
of domain specific knowledge for approximate match.

the protein has 50000 atoms
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psm: point set match for proteins
psm found, for instance, 6 locations:
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things to take into account

the search space and/or the objective function can be:

discrete or continous
total or partial

simple or complex
explicite or implicite
modelado or experimental

linear or non-linear
convex or non-convex

differentiable or non–differentiable
single-objective or multi-objective
constrained or unconstrained

static or dynamic

We have seen already a lot of examples of all kind.
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multi-objective optimization

given a search space X (called as well search domain or
problem space) and
a set of k functions fi (bounded from below) from the
search space to the real numbers (or at least a totally
ordered set) e.g. fi : X−→ R,
find an element x⋆ ∈ X such that fi(x⋆)≤ fi(x) for all x ∈ X
and all k functions fi
maybe there is no point in X that minimizes all the k
functions simultaneously, then we look for Pareto-optimal
solutions, i.e., solutions that cannot be improved without
worsening at least one of the other objective functions
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Pareto front

remind we have more than one independent objective
function
Pareto optimal (global): every other component for all
other solutions is worse (or equal)
(other names are: efficient points or non-interior points)
Pareto optimal (local): every other component for all other
solutions in a local neighborhood is worse (or equal)
hence, the Pareto front describes the trade-off between the
different objectives
the Pareto front consist of the points in the search space
that are not dominated by any other point
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Dominant points and regions

f

f1

2

uncomparable

dominated region

non
uncomparable

dominated region

EC Arno Formella 16 / 24



Pareto front

Example of a Pareto front with 2 marked non-dominated points:
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Pareto front

Example of a Pareto front for 2 objectives (on measured data):
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Multi–objective optimization

How can we find a somewhat good solution to the optimization
problem with more than one objective function?

convex combination of the objectives
homotopic techniques, i.e., compute the entire Pareto front,
for instance with a population based algorithm, and select
later...
(to obtain the Pareto front one might explore the
coefficient space of the convex combination)
goal programming, i.e., fixed values for all objectives and
minimize the distance of all objectives to the predefined
goals (according to some convenient distance metric)
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Multi–objective optimization (continued)

priority optimization, i.e., fix thresholds for all but one
objective function beforehand and optimize above the
threshold according to the most important one
priorization (multi-level) programming, i.e., optimize
according to a predefined ordering of the objective
functions.
fixed trade-off, i.e., find the point in the Pareto front that is
tangent to a certain hyperplane (especially usefull when
Pareto front is convex and low dimensional).
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Optimization with restrictions (or constraints)

In many application there are restrictions (or constraints) that
limit the optimization process:

find an element x⋆ ∈ X such that fi(x⋆)≤ fi(x) for all x ∈ X
and all k functions fi and
a certain number L of inequality constraints
gj(x)≥ 0 (for all j ∈ [1 : L]) are fulfilled, and
a certain number E of equality constraints
hn(x) = 0 (for all n ∈ [1 : N]) are fulfilled.

Simple constraints are for instance so-called box-constraints,
i.e., the search space is confined in each dimension by an
interval.

Such box constraints are often handled separately in the
optimization packages.
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Optimization with restrictions (or constraints)

The inequality and equality constraints again might be
linear or non-linear functions.
Due to the restrictions there might arise points (elements
of the search space) during the optimization process
which are unfeasible, i.e., no valid objective function values
can be computed (or even the objective function cannot be
computed at all).
Sometimes even trying to find some feasible solution is
already a very complex task (for instance: for TSP with
time windows the problem is already NP-hard).
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Optimization with restrictions (or constraints)

To tackle constraints there are two main classical approaches:

use of penalties, i.e., assign sufficiently large value(s) to the
objective function(s)
use of interior methods, i.e., make sure not to leave the
feasible region
(main idea: use the fulfillment of the constraints as
additional objective function building a so-called barrier
function with an additional parameter µ that is
continuously shrinked to reach zero)
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Multi–objective optimization with evolutionary
methods

Evolutionary methods can approximate the Pareto front in
parallel (with the help of the diversity among the
individuals).
For instance particle swarm systems varying the weights
of a convex combination periodically during the iterations.
For instance a genetic algorithm can hold a population that
tries to converge (in some sense uniformly) towards the
Pareto front.
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