
Evolutionary Computation
2024/25

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

24/25

EC Arno Formella 1 / 17



particle swarm optimization (PSO)

The inspiration comes from social behavior of individuals
within an environment including other individuals.
We work with n individuals that move in a continuous
d-dimensional search space.
The individuals move (in steps) through the search space
and adjust their velocities according to information
gathered from others (and their own histories).
The individuals are grouped into neighborhoods.

EC Arno Formella 2 / 17



PSO: velocity actualization

xi vector of current positions
vi vector of current directional velocities
bi best local position vector
hi best neighbor position vector
ϕ1,ϕ2 influence values (just some magic)
ξ ∈ [0.4,1], e.g. ξ = 0.729 inertia reduction value
velocity actualization

vi = ξvi+U[0,ϕ1]◦ (bi−xi)+U[0,ϕ2]◦ (hi−xi)
xi = xi+vi

The ◦ operator is either a Hadamard-operation (i.e.,
component-wise), or a linear operation (i.e., scalar
multiplication)

EC Arno Formella 3 / 17



PSO: principal loop

A particle swarm optimization can be summarized in the
following principal loop:

InitializePopulation() # i.e. x_i, v_i
EvaluateIndividuals() # i.e. b_i
DefineNeighborhoodSize()
while not Stopping():

DetermineNeighborhoodValues() # h_i
UpdateIndividuals() # i.e., x_i, v_i, b_i

EC Arno Formella 4 / 17



PSO: some more details

The velocity can be confined not to pass a certain
maximum velocity, which helps to avoid explosion, i.e., that
the area of the search space being explored becomes
exponentially larger.
Initial velocities can be zero or some random values.
Small neighborhoods tend to provide a better global
search, while large neighborhoods tend to produce a faster
convergence (but maybe premature).
Neighborhoods can be defined as nearest neighbors, as
fixed and overlapping, or entail the entire population, or
what-ever-you-like.
The inertia reduction can be increased with simulation
time.
Run experiments.

EC Arno Formella 5 / 17



PSO: some more details

The best global individual g can be included in the
equation:

add +U[0,ϕ3]◦ (g−xi)
The worst (local and global) positions can be avoided:

add −U[0,ϕ4]◦ (bi−xi)
and/or −U[0,ϕ5]◦ (hi−xi)
and/or −U[0,ϕ6]◦ (g−xi)

EC Arno Formella 6 / 17



PSO: different versions

binary version: the variables are interpreted as binary values
according to a distribution or threshold

discret version: the variables are interpreted as integer values
(for instance with simple rounding)

dynamic version: the search space is reinitialized and/or the
local variables are reset
(some type of outer Monte Carlo loop)

EC Arno Formella 7 / 17



PSO: convergence

the individuals should exhibit certain diversity
(recall the similarity measures)
diversity can be forced dynamically by adapting the
parameters alongside simulation time
or one might use the lack of diversity as a stopping
condition

EC Arno Formella 8 / 17



ant colony optimization (ACO)
The idea stems from stigmergy: exercise indirect
communication and coordination through the environment
(leave a trace and act on findings).

The inspiration stems from ants, bees, termites, wasps, etc.
(I use it at home :-)
The individuals of a population leave information
(pheromones) in the search space.
The decisions are based on individual information or
behavior and on the pheromones encountered.
The information (pheromones) is volatile and can
evaporate.
The pheromones or a statistical evaluation of the
individuals define the solution.
Initially invented to deal with combinatorial problems (like
TSP).

EC Arno Formella 9 / 17



ACO: principal loop

An ant colony optimization can be summarized in the following
principal loop:

InitializePheromoneValues()
while not Stopping():

for individuals in range(n):
ConstructSolution(individual)
UpdatePhermoneValues()
UpdateIndividuals()

EC Arno Formella 10 / 17



ACO: how TSP can be approached

The ant colony optimization takes place on the graph of
the underlying problem (e.g., the complete graph among all
cities).
The ants are placed at the cities.
The initial pheromones are placed on the edges
(either constant value or inversely proportional to the
distance).
The ants (in an appropriate iteration) run along a path in
the graph (excluding already visited cities) and draw at
each city a decision in which direction to continue.
The decision is based on: pheromones on each possible
edge, maybe on some own information stored at the
individual, and on a random value.

EC Arno Formella 11 / 17



ACO: how TSP can be approached (continued)

Once the tour is completed for all ants, all of them deposit
their pheromone on their tracks.
The general evaporation process is applied to all/changed
edges.
The currently best tour is memorized.
The iteration is repeated until a certain stopping condition
is met.

EC Arno Formella 12 / 17



ACO: when to use?

Ant Colony Optimization approaches are especially interesting
when the underlying problem allows for a constructive solution
(as seen, for instance, with the nearest-neighbor heuristic for
the TSP).

Simon gives the example that an ACO approach found a tour
with 3% gap on the Berlin52 problem.

EC Arno Formella 13 / 17



The no-free-lunch theorem

The no-free-lunch theorem states that the performance of all
optimization (search) algorithms, amortized over the set of all
possible functions, is equivalent.

The implications of this theorem are far reaching, since it
implies that no general algorithm can be designed so that it will
be superior to a linear enumeration of the search space (i.e.
exhaustive search).

EC Arno Formella 14 / 17



What are practical implications of the no-free-lunch
theorem?

Each problem (or each type/class of problem) might need
its own and proper optimization method.
Maybe for interesting problems we find good optimization
algorithms (we are not interested in all problems).
Benchmarking optimization algorithms is a challenge, as
general benchmarks might just provide average data, but
our algorithm might be special for a niche of problems.
There is a need to categorize problems and algorithms to
obtain some insight on which type of problem a certain
type of algorithm performs well.

EC Arno Formella 15 / 17



How to compare different approaches?

In order to compare different algorithms one might take into
account:

wall clock runtime on comparable systems
(average) number of objective functions evaluations
(but the rest of the inverted time must not be neglected)
difficult to be used when comparing constructing
algorithms
the result as distance to optimium or to some known lower
bound
mean best fitness
properties of the solution histogram (fitness of all
solutions found)
scaling properties with problem size (applied to any
measure above)

EC Arno Formella 16 / 17



Practical aspects to be considered

One has to decide what is really needed:

need a good (or best) solution independent of runtime
(e.g. controler for space telescope or the evolved antenna)
need a moderate solution fast
(e.g., daily TSP with time windows, where finding a feasible
solution is already NP-hard)

EC Arno Formella 17 / 17


