
Evolutionary Computation
2024/25

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

24/25

EC Arno Formella 1 / 27

GA: mutation possiblities

gene mutation:
just change randomly one (or more) gen(es) to
another permitted allele

gene flip:
interchange the values of two (or more) genes

gene sequence displacement:
cut a sequence/part and insert at another position

gene sequence inversion:
revert the order of a (partial) sequence

what-ever-you-like:
do something, be happy...

EC Arno Formella 2 / 27

GA: mutation rules of thumb

The mutation rate should be, more or less, inversely
proportional to the size of the genome.
For larger populations maybe reduce mutation rate in the
on-going optimization process.
With low diversity in the populations, maybe a larger
mutation rate helps.

EC Arno Formella 3 / 27

GA: crossover possiblities

simple crossover:
parents cut children
(101101) (10|1101)−→ (100111)
(010111) (01|0111)−→ (011101)

(2,8,98,3) (2,8, |98,3)−→ (2,8,40,4)
(1,9,40,4) (1,9, |40,4)−→ (1,9,98,3)

k-point crossover:
cut at k points and interchange the corresponding
parts (variation: take k at random)

uniform crossover:
interchange each gene with certain probability

multiple parent mating:
use more then two parents and interchange genes
(variation: merge entire parent set)

EC Arno Formella 4 / 27

GA: crossover possiblities (continued)

arithmetic crossover: assign to children convex combination of
parent genes with some random weight, α ∈ [0,1],
e.g., with α = 0.7 on second gene:
34.5 ·0.7+ 13.5 ·0.3= 28.2
(1.23,34.5,−2.1)−→ (1.23,28.2,−2.1)
13.5 ·0.7+34.5 ·0.3= 19.8
(10.5,13.5,23.1)−→ (10.5,19.8,23.1)
(again variations: as k-point, or with all genes, or
with k at random)

blended crossover: blend two corresponding parent genes with
a certain, usually fixed, value α ∈ [−0.5,∞]
according to the current gene spread

simulated binary crossover: blend two corresponding parent
genes according to a suitable probability density
function

what-ever-you like: remember, do something, be happy...
EC Arno Formella 5 / 27

GA: crossover example (2-point cyclic crossover)

select two
grid points
interchange
rectangles

EC Arno Formella 6 / 27

GA: principal loop

A genetic algorithm can be summarized in the following
principal loop (parts that are dealt with marked with DONE):

InitializePopulation() # initialization
EvaluateIndividuals() # evaluation DONE
while not Stopping(): # stopping

DetermineParents() # selection
GenerateChildren() # recombination DONE
MutateChildren() # mutation DONE
EvaluateIndividuals() # evaluation DONE
ReestablishPopulation() # selection

EC Arno Formella 7 / 27

GA: selection
In the principal loop, there are two selection processes:

How to select the parents to generate the off-springs? and
How to rearrange the final population or next generation?

We use the following notation:
µ stands for the number of individuals in the population
λ stands for the number of children being generated

We distinguish two main strategies:
(µ +λ)-strategy

from the µ individuals of the current generation select the
parents and generate λ children
from the µ +λ individuals choose the µ best ones as new
generation

(µ,λ)-strategy
from the µ individuals of the current generation select the
parents and generate λ ≥ µ children
from the λ children choose the µ best ones as new
generation

The second question from above is answered.
EC Arno Formella 8 / 27

GA: selection options

To select the parents being allowed to have off-springs,
there exists a bunch of suggestions:

roulette wheel: assign to each individual a fraction of the wheel
according to its relative fitness and spin the wheel
(variation: smooth, weight, or normalize the fitness
somehow, e.g., use log of objective function, or use
z-score)

rank based: order the individuals according to fitness and
select with a probability weighted by the rank
(variation: compute selection probability with
linear function of rank, so the least ranked still
gets certain probability to get selected)

EC Arno Formella 9 / 27

GA: selection options (continued)

tournament based: draw a certain number of random
individuals, select the best one as parent
(variation: select directly the best two as parents)

truncation selection: only the individuals with highest fitness
values will be parents

what-ever-you like: remember, do something, be happy...

The first question (from two slides earlier) is answered.

EC Arno Formella 10 / 27

GA: initialization

generate the initial population with random genomes
take into account that the distribution according to
genotype not necessarily is similar to the distribution in
phenotype
maybe there are many individuals with very low fitness
the initial convergence rate might be slow

generate the initial population with individuals from
another heuristic algorithm or various such algorithms

the population might be biased into a certain region of the
search space
the diversity of the population might be low
the convergence rate might be trapped early in a local
optimum

recommendation: use a mixture of both

EC Arno Formella 11 / 27

GA: termination criteria

There are many possibilities when to stop the iteration of a
genetic algorithm:

once the first solution has been found
once a sufficiently good solution has been found
once the optimum has been found
once a certain number of iterations has been executed
once the diversity of the population is below a certain
threshold
once the convergence rate of the improvement is below a
certain threshold
once a certain amount of runtime has been spent
recommendation: use an or-mixture of all

EC Arno Formella 12 / 27

GA: results for the example (2007)

119 of 149 nodes used 24 of 149 nodes used
EC Arno Formella 13 / 27

GA: use for antenna design (small satellites)

Horny, AlGlobus, Linden, Lohn: Automated Antenna Design with Evolutionary Algorithms (2012)

https://arc.aiaa.org/doi/10.2514/6.2006-7242 or https://www.researchgate.net/

publication/228909002_Automated_Antenna_Design_with_Evolutionary_Algorithms

EC Arno Formella 14 / 27

https://arc.aiaa.org/doi/10.2514/6.2006-7242
https://www.researchgate.net/publication/228909002_Automated_Antenna_Design_with_Evolutionary_Algorithms
https://www.researchgate.net/publication/228909002_Automated_Antenna_Design_with_Evolutionary_Algorithms

GA: diversity

The diversity measures, in some sense, the non-similarity
between the individuals of a population.
E.g., Hamming-distance over the bitstring (using exor):
010010⊗ 101000= 111010−→ 4
e.g., delta-distance over the integer (or real) sequence:
∑i |xi−x′i| (being x and x′ two individuals)
There are much more similarity measures
https://towardsdatascience.com/

17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681/.
Similar individuals in a population reduce the diversity and
the genetic algorithm maybe gets stuck in some region of
the search space (maybe, but not necessarily, a local
minimum).

EC Arno Formella 15 / 27

https://towardsdatascience.com/17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681/
https://towardsdatascience.com/17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681/

GA: diversity

To augment the diversity, we have only the mutation
operation, provided the mutation becomes visible in the
next generation.
(Observe: whenever an allele disappears in a population,
most of the crossover operations cannot regenerate it!)
Another possibility is just to regenerate a completely or
partially new population.

EC Arno Formella 16 / 27

GA: elitism

We have to draw the decision whether the best individual(s) is
(are) forced to belong unmodified to the next generation.

Elitism might help to converge faster.
Elitism might reduce diversity faster.
The consequences of this trade-off are problem dependent.

EC Arno Formella 17 / 27

GA: final remarks

The difficulties of understanding and analizing genetic
algorithms lie in the fact that they implement a
combination of random search (by mutation) and biased
search (by recombination).
Genetic algorithms need unique and problem-specific
mutation and recombination operators, which makes it
more challenging to implement a generic version that can
be easily applied to different optimization problems.
Nature still has its somewhat better approach: DNA, RNA,
gene expression with regulation, proteins, and
mitochondria (mtDNA), and, and, and,...
(e.g. https://www.ncbi.nlm.nih.gov/books/NBK459456/)

EC Arno Formella 18 / 27

https://www.ncbi.nlm.nih.gov/books/NBK459456/

evolutionary programming (EP)

Once we have seen GA, evolutionary programming is somewhat
simpler: it just uses mutation.

there exist only the phenotypes, let’s say xi (for i= 1, . . . ,n),
i.e., n individuals in the population
modification (mutation) is realized over the phenotypes as:

x′i = xi+ ri
√

β f(xi)+ γ

being β > 0 and γ ≥ 0 tuning parameters (for instance β = 1
and γ = 0) and ri is a random value taken from a normal
distribution with mean 0 and variance 1 (i.e., ri ∈ N[0,1]n).
Note that the fitness (objective function f) must be shifted,
so the minimum is positive.
Usually a (µ +µ)-selection strategy is used: all individuals
are mutated and the best µ individuals are kept.

EC Arno Formella 19 / 27

EP: principal loop

A evolutionary programming algorithm can be summarized in
the following principal loop:

InitializePopulation()
EvaluateIndividuals()
while not Stopping():

GenerateChildrenByMutation()
EvaluateIndividuals()
ReestablishPopulation()

EC Arno Formella 20 / 27

differential evolution (DE)
Once we have seen GA, differential evolution is somewhat
simpler: it just uses a special type of recombination
(crossover).

there exist only the phenotypes, let’s say xi (for i= 1, . . . ,n),
i.e., n individuals in the population
For each individual we select three other individuals, say
xj,xk,xl, to compute a mutant vector vi

vi = xj+F · (xk−xl)

being F ∈ [0.4,0.9] (usually) a tuning parameter.
Then we generate an off-spring with a uniform crossover
between individual xi and mutant vi using a certain
threshold c
Usually a (µ +µ)-like selection strategy is used: all
individuals are used to generate off-springs, and the best
are kept.

EC Arno Formella 21 / 27

DE: principal loop

A differential evolution algorithm can be summarized in the
following principal loop:

InitializePopulation()
EvaluateIndividuals()
while not Stopping():

GenerateChildrenByDiffusion()
EvaluateIndividuals()
ReestablishPopulation()

EC Arno Formella 22 / 27

DE: some variations

One might consider to use always the best individual found
so far as individual xj.
The tuning parameter F might vary, i.e., taking the value
from a uniform or a normal distribution.
One might use DE on discrete sets as well by just rounding
the mutants appropriately (or search in the close integer
neighborhood according to the dimension of the underlying
problem).
(My opinion) Differential evolution is not just a genetic
algorithm, as there is no genotype, rather the other way
round: a genetic algorithm using the phenotype as
genotype, no mutation, and a random recombination,
becomes a differential evolution algorithm.

EC Arno Formella 23 / 27

genetic programming (GP)

Once we have seen GA, genetic programming is a genetic
algorithm with some special phenotypes and genotypes.

the genotype is a (simple) program described as a syntax
tree that can be written as well with Polish notation (prefix
notation), see next slide...
the parenthesis can be eliminated, interpretation of the
corresponding expression is easy to perform with a stack
automaton.
some properties of the execution of the resulting program
(as phenotype) are used as fitness (see example, later)

EC Arno Formella 24 / 27

GP: syntax tree

syntax tree and Polish notation

(2.2-(x/11))+(7*cos(y))

(+ (- (2.2 (/ X 11))) (* (7 cos(Y))))

+ - 2.2 / X 11 * 7 cos Y

image taken from wikipedia

EC Arno Formella 25 / 27

GP: mutation and crossover operations

the programs are modified with adecuate mutation and
crossover operations
mutation:

change a node, but take care to keep a valid syntax tree
(maybe subtrees must be removed or added)
rotate nodes
interchange nodes

crossover: interchange a subtree of one parent with a
subtree of the other parent

EC Arno Formella 26 / 27

GP: example

Program a robot (ant) that starts at some cell (usually a corner)
and tries to find as many objects (food) with as few steps as
possible.

Santa Fe Trail

nodes: turn-left, turn-right, move, if-food-ahead

EC Arno Formella 27 / 27

