Arno Formella

Departamento de Informética
Escola Superior de Enxefaria Informética
Universidade de Vigo

24/25

GA: mutation possiblities

gene mutation:
just change randomly one (or more) gen(es) to
another permitted allele

gene flip:
interchange the values of two (or more) genes

gene sequence displacement:
cut a sequence/part and insert at another position

gene sequence inversion:
revert the order of a (partial) sequence

what-ever-you-like:
do something, be happy...

Lr]E

UniversidagVigo EC Arno Formella 2/27

GA: mutation rules of thumb

@ The mutation rate should be, more or less, inversely
proportional to the size of the genome.

@ For larger populations maybe reduce mutation rate in the
on-going optimization process.

@ With low diversity in the populations, maybe a larger
mutation rate helps.

Lr]E

UniversidagVigo EC Arno Formella 3/27

GA: crossover possiblities

simple crossover:
parents cut children
(101101) (10/1101) — (100111)
(010111) (01j0111) — (011101)
(

(2,8,98,3) (2.8,198,3) — (2,8,40,4)
(17974074) (1a93|4074)—>(179a9873)

k-point crossover:
cut at k points and interchange the corresponding

parts (variation: take k at random)

uniform crossover:
interchange each gene with certain probability

multiple parent mating:
use more then two parents and interchange genes

(variation: merge entire parent set) T

UniversidagVigo EC Arno Formella 4/27

GA: crossover possiblities (continued)

arithmetic crossover: assign to children convex combination of
parent genes with some random weight, a < [0,1],
e.g., with ¢ = 0.7 on second gene:
34.5.0.7+13.5-0.3=28.2
(1.23,34.5,-2.1) — (1.23,28.2,-2.1)
13.5-0.7+34.5-0.3=19.8
(10.5,13.5,23.1) — (10.5,19.8,23.1)
(again variations: as k-point, or with all genes, or
with k at random)

blended crossover: blend two corresponding parent genes with
a certain, usually fixed, value o € [-0.5,]
according to the current gene spread

simulated binary crossover: blend two corresponding parent
genes according to a suitable probability density
function

what-ever-you like: remember, do something, be happy... Ln®

UniversidagVigo EC Arno Formella 5/27

GA: crossover example (2-point cyclic crossover)

father mother

danghrer

father mother

danghrer

UniversidagVigo EC Arno Formella

@ select two
grid points

@ interchange
rectangles

6/27

2

GA: principal loop

A genetic algorithm can be summarized in the following
principal loop (parts that are dealt with marked with DONE):

InitializePopulation() # initialization

EvaluateIndividuals () # evaluation DONE

while not Stopping(): # stopping
DetermineParents () # selection
GenerateChildren () # recombination DONE
MutateChildren () # mutation DONE
EvaluateIndividuals () # evaluation DONE
ReestablishPopulation () # selection

LrIE

UniversidagVigo EC Arno Formella 7/27

GA: selection

@ In the principal loop, there are two selection processes:
e How to select the parents to generate the off-springs? and
e How to rearrange the final population or next generation?
@ We use the following notation:
e u stands for the number of individuals in the population
e A stands for the number of children being generated
@ We distinguish two main strategies:
o (i -+ A)-strategy
e from the p individuals of the current generation select the
parents and generate A children
o from the u+ A individuals choose the p best ones as new
generation
o (u,A)-strategy
e from the u individuals of the current generation select the
parents and generate A > u children
@ from the A children choose the i best ones as new
generation

The second question from above is answered.

UniversidagVigo EC Arno Formella

Lr]E

8/27

GA: selection options

To select the parents being allowed to have off-springs,
there exists a bunch of suggestions:

roulette wheel: assign to each individual a fraction of the wheel
according to its relative fitness and spin the wheel
(variation: smooth, weight, or normalize the fitness
somehow, e.g., use log of objective function, or use
z-score)

rank based: order the individuals according to fitness and
select with a probability weighted by the rank
(variation: compute selection probability with
linear function of rank, so the least ranked still
gets certain probability to get selected)

UniversidagVigo EC Arno Formella

Lr]E

9/27

GA: selection options (continued)

tournament based: draw a certain number of random
individuals, select the best one as parent
(variation: select directly the best two as parents)

truncation selection: only the individuals with highest fitness
values will be parents

what-ever-you like: remember, do something, be happy...

The first question (from two slides earlier) is answered.

UniversidagVigo EC Arno Formella

Lr]E

10/ 27

GA: initialization

@ generate the initial population with random genomes

e take into account that the distribution according to
genotype not necessarily is similar to the distribution in
phenotype

e maybe there are many individuals with very low fitness

e the initial convergence rate might be slow

@ generate the initial population with individuals from
another heuristic algorithm or various such algorithms

e the population might be biased into a certain region of the
search space

o the diversity of the population might be low

e the convergence rate might be trapped early in a local
optimum

@ recommendation: use a mixture of both

UniversidagVigo EC Arno Formella

Lr]E

11/27

GA: termination criteria

There are many possibilities when to stop the iteration of a
genetic algorithm:

UniversidagVigo

once the first solution has been found

once a sufficiently good solution has been found

once the optimum has been found

once a certain number of iterations has been executed

once the diversity of the population is below a certain
threshold

once the convergence rate of the improvement is below a
certain threshold

once a certain amount of runtime has been spent
recommendation: use an or-mixture of all
e

EC Arno Formella 12/27

GA: results for the example (2007)

119 of 149 nodes used 24 of 149 nodes used Lne

UniversidagVigo EC Arno Formella 13/27

GA: use for antenna design (small satellites)

Horny, AlGlobus, Linden, Lohn: Automated Antenna Design with Evolutionary Algorithms (2012)

https://arc.aiaa.org/doi/10.2514/6.2006-72420rhttps://w

publication _Automated_Antenna with_Evolutionary_Algorithms

UniversidagVigo EC Arno Formella 14/27

https://arc.aiaa.org/doi/10.2514/6.2006-7242
https://www.researchgate.net/publication/228909002_Automated_Antenna_Design_with_Evolutionary_Algorithms
https://www.researchgate.net/publication/228909002_Automated_Antenna_Design_with_Evolutionary_Algorithms

GA: diversity

@ The diversity measures, in some sense, the non-similarity
between the individuals of a population.

@ E.g., Hamming-distance over the bitstring (using exor):
010010 ® 101000 = 111010 — 4

@ e.g., delta-distance over the integer (or real) sequence:
Y. [x; —x]| (being x and x’ two individuals)

@ There are much more similarity measures

1 e f imilari n issimilari measure ed-in-dat ience-3eb914d2681/.
@ Similar individuals in a population reduce the diversity and
the genetic algorithm maybe gets stuck in some region of
the search space (maybe, but not necessarily, a local
minimum).
LI—]E

UniversidagVigo EC Arno Formella 15727

https://towardsdatascience.com/17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681/
https://towardsdatascience.com/17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681/

GA: diversity

@ To augment the diversity, we have only the mutation
operation, provided the mutation becomes visible in the
next generation.

(Observe: whenever an allele disappears in a population,
most of the crossover operations cannot regenerate it!)

@ Another possibility is just to regenerate a completely or
partially new population.

UniversidagVigo EC Arno Formella

Lr]E

16 /27

GA: elitism

We have to draw the decision whether the best individual(s) is
(are) forced to belong unmodified to the next generation.

@ Elitism might help to converge faster.
@ Elitism might reduce diversity faster.
@ The consequences of this trade-off are problem dependent.

Lr]E

UniversidagVigo EC Arno Formella 17 /27

GA: final remarks

@ The difficulties of understanding and analizing genetic
algorithms lie in the fact that they implement a
combination of random search (by mutation) and biased
search (by recombination).

@ Genetic algorithms need unique and problem-specific
mutation and recombination operators, which makes it
more challenging to implement a generic version that can
be easily applied to different optimization problems.

@ Nature still has its somewhat better approach: DNA, RNA,
gene expression with regulation, proteins, and
mitochondria (mtDNA), and, and, and,...

(e.g. https://www.ncbi.nlm.nih.gov/books/NBK459456)

UniversidagVigo EC Arno Formella

Lr]E

18/27

https://www.ncbi.nlm.nih.gov/books/NBK459456/

evolutionary programming (EP)

Once we have seen GA, evolutionary programming is somewhat
simpler: it just uses mutation.

@ there exist only the phenotypes, let's say x; (fori=1,...,n),
i.e., n individuals in the population
@ modification (mutation) is realized over the phenotypes as:

Xj =Xi+riv/Bf(x;)+vy

being § > 0 and y > 0 tuning parameters (for instance § =1
and y = 0) and r; is a random value taken from a normal
distribution with mean 0 and variance 1 (i.e., rj € N[0,1]").

@ Note that the fitness (objective function f) must be shifted,
so the minimum is positive.

@ Usually a (i + u)-selection strategy is used: all individuals
are mutated and the best u individuals are kept.

UniversidagVigo EC Arno Formella

Lr]E

19/27

A evolutionary programming algorithm can be summarized in
the following principal loop:

InitializePopulation ()

EvaluateIndividuals ()

while not Stopping():
GenerateChildrenByMutation ()
EvaluateIndividuals ()
ReestablishPopulation ()

differential evolution (DE)

Once we have seen GA, differential evolution is somewhat
simpler: it just uses a special type of recombination
(crossover).

@ there exist only the phenotypes, let’s say x; (fori=1,...,n),
i.e., n individuals in the population

@ For each individual we select three other individuals, say
Xj, Xk, X, to compute a mutant vector v;

Vi=Xj+F-(xx—X)

being F € [0.4,0.9] (usually) a tuning parameter.
@ Then we generate an off-spring with a uniform crossover
between individual x; and mutant v; using a certain
threshold ¢
@ Usually a (i + u)-like selection strategy is used: all
individuals are used to generate off-springs, and the best
are kept. L

UniversidagVigo EC Arno Formella 21/27

A differential evolution algorithm can be summarized in the
following principal loop:

InitializePopulation ()

EvaluateIndividuals ()

while not Stopping():
GenerateChildrenByDiffusion ()
EvaluateIndividuals ()
ReestablishPopulation ()

DE: some variations

@ One might consider to use always the best individual found
so far as individual x;.

@ The tuning parameter F might vary, i.e., taking the value
from a uniform or a normal distribution.

@ One might use DE on discrete sets as well by just rounding
the mutants appropriately (or search in the close integer
neighborhood according to the dimension of the underlying
problem).

@ (My opinion) Differential evolution is not just a genetic
algorithm, as there is no genotype, rather the other way
round: a genetic algorithm using the phenotype as
genotype, no mutation, and a random recombination,
becomes a differential evolution algorithm.

UniversidagVigo EC Arno Formella

Lr]E

23/27

genetic programming (GP)

Once we have seen GA, genetic programming is a genetic
algorithm with some special phenotypes and genotypes.

@ the genotype is a (simple) program described as a syntax
tree that can be written as well with Polish notation (prefix
notation), see next slide...

@ the parenthesis can be eliminated, interpretation of the
corresponding expression is easy to perform with a stack
automaton.

@ some properties of the execution of the resulting program
(as phenotype) are used as fitness (see example, later)

UniversidagVigo EC Arno Formella

Lr]E

24 /27

syntax tree and Polish notation

©
() ()
DEONONS
) @ O

(2.2 —(%)) +(7* cos(Y))

@ (2.2-(x/11))+ (7*cos(y))
@ (+ (- (2.2 (/ X 11))) (x (7 cos(Y))))
@+ -2.2 /X 11 « 7 cos Y

2
image taken from wikipedia Ln

GP: mutation and crossover operations

@ the programs are modified with adecuate mutation and
crossover operations
@ mutation:

e change a node, but take care to keep a valid syntax tree
(maybe subtrees must be removed or added)
@ rotate nodes
e interchange nodes
@ crossover: interchange a subtree of one parent with a
subtree of the other parent

UniversidagVigo EC Arno Formella

Lr]E

26/ 27

GP: example

Program a robot (ant) that starts at some cell (usually a corner)
and tries to find as many objects (food) with as few steps as
possible.

Santa Fe Trail

T T]
0
(|||
]]

|
[
|
1
J’

1]

nodes: turn-left, turn-right, move, if-food-ahead .
LI

UniversidaqVigo EC Arno Formella 27/27

