
Evolutionary Computation
2024/25

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

24/25

EC Arno Formella 1 / 45



How does the genetic algorithm work?

A genetic algorithm is a bio-inspired probabilistic algorithm:

initialize a set of individuals
while stopping criterium not met

evaluate fitness of the individuals (in search space)
generate off-springs (mutation and crossover, in the
encoding space)
generate a new generation, i.e., a subset of parents plus
off-springs (selection)

report best individual generated in the process

You’ll work with this approach in the lab hours.

EC Arno Formella 2 / 45



additional information

additional information and benchmark instances can be found
at:

http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/ or
https:

//www.math.uwaterloo.ca/tsp/data/index.html

almost a counterexample of how to implement GA for TSP
https:

//jaketae.github.io/study/genetic-algorithm/

we use the work at
https://github.com/guofei9987/scikit-opt

EC Arno Formella 3 / 45

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://www.math.uwaterloo.ca/tsp/data/index.html
https://www.math.uwaterloo.ca/tsp/data/index.html
https://jaketae.github.io/study/genetic-algorithm/
https://jaketae.github.io/study/genetic-algorithm/
https://github.com/guofei9987/scikit-opt


parallelization

Monte Carlo algorithms, and hence, evolutionary
algorithms are often quite easy to parallelize.
We will not talk about parallelization in this course,
however, it is an important issue in order to achieve good
performance on modern systems.

EC Arno Formella 4 / 45



the sorting problem

Sorting is a basic, well known, and well studied problem.
Given a sequence of n elements belonging to an orderable
set, we have to compute a permutation of the input
elements such that they are ordered (according to the
underlying compare function).
Simple example: given a sequence of integer numbers;
sort ascending.
Note that there are n! possible permutations.
(Funny, the same number as there are tours in TSP.)

EC Arno Formella 5 / 45



checking a solution

Before doing the actual sorting, let’s first design an
algorithm that checks the results, i.e., checks that the
sequence is sorted.
Remember: we require that we can check with an algorithm
that the output/result of our initial algorithm is correct
(i.e., fulfills the corresponding properties).
Personally, I recommend that you always try to design and
implement such a checker!
As already stated: sometimes the properties of the output
when using an evolutionary algorithm can be checked only
very weakly.
For TSP at least check: you got a tour, the gap lies
inbetween known lower and upper bounds.

EC Arno Formella 6 / 45



checker for the sorting problem

Check whether a pair of elements is sorted:

def PairIsSorted(v,i,j):
return v[i]<=v[j]

Check whether a sequence of elements is sorted:

def IsSorted(v):
for i in range(len(v)-1):

if not PairIsSorted(v,i,i+1):
return False

return True

EC Arno Formella 7 / 45



the bubble sort algorithm

A simple sorting algorithm (bubble sort):

def PairSort(v,i,j): # sorts a pair
if not PairIsSorted(v,i,j):
v[i],v[j]=v[j],v[i]

def BubbleSort(v): # LasVegas type
while not IsSorted(v):

for i in range(len(v)-1):
PairSort(v,i,i+1)

Runs in quadratic time (worst case) and linear time (best case).

EC Arno Formella 8 / 45



Monte Carlo sorting

Let us implement a Monte Carlo sorting algorithm:
we select a random pair of elements and interchange when
necessary:

def MonteCarloSort(v,rounds):
for j in range(rounds):

i,j=RandomPair(v)
PairSort(v,i,j)

Whenever the number of rounds is sufficiently large and we are
lucky, the sequence will become sorted.

EC Arno Formella 9 / 45



Las Vegas sorting

Let us implement a Las Vegas sorting algorithm: we select a
random pair of elements, interchange when necessary, and
stop when the sequence is sorted:

def LasVegasSort(v):
while not IsSorted(v):
i,j=RandomPair(v)
PairSort(v,i,j)

Maybe we need to wait a very long time, but we always get a
sorted sequence. Observe: Las Vegas algorithms are easy to
design, when we have a checker!

EC Arno Formella 10 / 45



Las Vegas Monte Carlo sorting

Whenever we have a checker, we can implement a Las Vegas
algorithm on the base of a Monte Carlo algorithm, so for sorting
we can do:

def LasVegasMonteCarloSort(v,rounds):
while not IsSorted(v):
MonteCarloSort(v,rounds)

EC Arno Formella 11 / 45



Monte Carlo sort with Las Vegas condition

We can improve the Monte Carlo sort introducing a Las Vegas
condition to stop earlier:

def MonteCarloLasVegasSort(v,rounds):
while not IsSorted(v) and rounds>0:
i,j=RandomPair(v)
PairSort(v,i,j)
rounds-=1

This idea reflects the general structure of a heuristic
probabilistic algorithm: for a certain time do something maybe
useful, and stop when a certain condition is met.

EC Arno Formella 12 / 45



Efficient sorting
An efficient O(n logn) algorithm to sort is the merge-sort
algorithm, here written in its iterative form (divide and conquer
paradigm):

def Merge(v,w,left,middle,right):
i,j=left,middle
for k in range(left,right):

if j>=right or (i<middle and PairIsSorted(v,i,j)):
w[k]=v[i]; i+=1

else:
w[k]=v[j]; j+=1

def MergeSort(w):
s,n=1,len(w)
while s<n:

v=w[:]
for left in range(0,n,2*s):
Merge(v,w,left,left+s,min(left+2*s,n))

s*=2

EC Arno Formella 13 / 45



sorting as an optimization problem

In order to state the integer sorting problem as an
optimization problem, we need to specify an objective
function.
Let x= (x1,x2, . . . ,xn) be the current sequence of integer
values.
We use f(x) = ∑

n
i=1 i ·xi as objective function.

Our aim is to maximize f(x) at which point the sequence x
is sorted; to minimize we take the negative value:

def SortObjective(v):
f=0
for i in range(len(v)):

f+=v[i]*(i+1)
return -f

or
def SortObjective(v):

return -sum([v[i]*(i+1) for i in range(len(v))])

EC Arno Formella 14 / 45



sorting as an optimization problem

Now, we can use a genetic algorithm (e.g. the one we have for
the TSP problem) to sort our sequence (note, we want an order
on the cities, but now with our objective function for sorting and
not the one for a minimal tour length).

def GASort(w):
ga=GA_TSP(

func=fobj,n_dim=len(w),size_pop=100,
max_iter=1000,prob_mut=1

)
best_points,best_val=ga.run()
v=w.copy()
for i in range(len(best_points)):
w[i]=v[int(best_points[i])]

More in lab hours (fobj will be computed on a different data
structure).

EC Arno Formella 15 / 45



convergence of bubble sort

Slow improvement, finds the minimum always.

EC Arno Formella 16 / 45



convergence of Monte Carlo sort

Fast improvement, fixed number of steps, might not find
minimum.

EC Arno Formella 17 / 45



convergence of Las Vegas sort

Fast improvement at the beginning, and slowly finds the
minimum.

EC Arno Formella 18 / 45



convergence of Las Vegas with Monte Carlo sort

EC Arno Formella 19 / 45



convergence of Monte Carlo sort with Las Vegas
condition

Fast improvement, but might not find minimum (however, stops
if found).

EC Arno Formella 20 / 45



convergence of merge sort

Deterministic very fast improvement, finds the minimum
always!

EC Arno Formella 21 / 45



convergence of genetic algorithm sort

Well, works, but might not find the minimum.

EC Arno Formella 22 / 45



summary of convergence for sorting algorithms

Maybe the genetic algorithm is not the right choice,
better stick to the deterministic classic one.

EC Arno Formella 23 / 45



Can we sort faster?

You can always ask: can we sort faster?

It depends... when we have more information about the
data, maybe we can sort faster!
In the given example, we started with a random
permutation of n consecutive numbers.
So sorting them is easy: just count—starting at the
minimum—up to n, hence, a linear time algorithm!
It’s always worthwhile to analyse the underlying data!

EC Arno Formella 24 / 45



interpretation of the results

Don’t get betrayed by a small number of program runs that
might even suggest some good results (both in precision as
well as in runtime).

You should always ask to see several/many runs, and to
determine the variance of the results, so that you can compute
the Monte Carlo standard error.

EC Arno Formella 25 / 45



The (0,1)-knapsack problem

The (0,1)-knapsack problem (KSP) is another classical
combinatorial optimization problem, where

Given a set of items, each with a certain weight and value,
and
given a knapsack with a certain weight capacity,
find the maximum total value you can carry with the
knapsack.

Note that in this problem (in comparison to TSP or sorting) we
have infeasible combinations (i.e., the subset might be too
heavy).

EC Arno Formella 26 / 45



an example knapsack problem

If we take all available items:

EC Arno Formella 27 / 45



packing the knapsack with greedy weight algorithm

We take the lightest items as long as they fit:

EC Arno Formella 28 / 45



packing the knapsack with greedy value algorithm

We take the most valued items as long as they fit:

EC Arno Formella 29 / 45



packing the knapsack with greedy ratio algorithm

We take the best rated (value per weight unit) items as long as
they fit:

EC Arno Formella 30 / 45



optimal packing the knapsack with dynamic
programming

We find the optimal solution with dynamic programming:

EC Arno Formella 31 / 45



It seems all algorithms are great?

The previous algorithms all packed a value of 27 into the
knapsack...

You noticed that I have cheated?
All algorithms found an optimal packaging!
You know why?
I was lucky.

EC Arno Formella 32 / 45



Evolutive methods

Evolutive methods work with populations of individuals
(or only one individual and a certain type of memory).
There are probabilistic modification processes
(mutation, reproduction, recombination/crossover) that
change the population from one to the next generation.
The performance of the individuals is based on a fitness
which usually is the objective function (but not
necessarily).
There is a selection process to maintain a (more or less)
stable state (size) of the population.
Most of the algorithmic decisions are drawn
probabilistically.

I will not give details on the history and researchers, please,
take a look at the literature/bibliography.

EC Arno Formella 33 / 45



Genetic algorithms (GA)

We distinguish the genotype (codification of the
individuals) and the phenotype (elements of the search
space).
There must exist a bijection between genotype and
phenotype.
The genotype encodes the free parameters of an individual.
The modifications (mutation and
recombination/crossover) are carried out over the
genotype.
The fitness is evaluated over the phenotype (our objective
function).
We have to explain: codification (of the genotype),
initialization, mutation, recombination/crossover, selection,
and stopping.

EC Arno Formella 34 / 45



GA: principal loop

A genetic algorithm can be summarized in the following
principal loop:

InitializePopulation() # initialization
EvaluateIndividuals() # evaluation
while not Stopping(): # stopping

DetermineParents() # selection
GenerateChildren() # recombination
MutateChildren() # mutation
EvaluateIndividuals() # evaluation
ReestablishPopulation() # selection

EC Arno Formella 35 / 45



GA: encoding of the individuals
There are many possibilities how to encode the free parameters
of an individual to form its genotype:

use a binary bitstring, e.g., (101101)
use a sequence of integer values in certain ranges, e.g.,
(2,6,98,3) ∈ [1 : 2]× [1 : 10]× [0 : 100]× [1 : 5]
use a sequence of real values in certain ranges, e.g.,
(1.23,34.4,−2.1) ∈ [−50.0,50.0]
use a permutation
use a k-dimensional structure
use a binary tree
use a general graph
use whatever you like (recall: do something, be happy...)

Remember: we need a bijection between genotype and
phenotype and we need to implement crossovers and
mutations that are able to explore the entire search space
(or at least the region of interest).

EC Arno Formella 36 / 45



GA: names taken from biology

The individual components of the sequences are called
genes.
The possible values of a gene are called allele.
The encoding of an individual is called its genome or
chromosome.

EC Arno Formella 37 / 45



GA: genotype an example

green: base stations
crosses: mobile users
magenta: assignment
goal: find the minimal
subset of base stations
that guarantees an
assignment of all mobiles
Note: computation of the
objective function is quite
complex (and will not be
detailed here).

EC Arno Formella 38 / 45



GA: genotype an example

initial
8×8 grid
reduced to
3×3 grid
4 allele
(2-bit strings)

unusable
used
unused
fixed

EC Arno Formella 39 / 45


