
Evolutionary Computation
2024/25

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

24/25

EC Arno Formella 1 / 33

evaluation/assessment

active participation in class (10%)
two major up-loads of homework (50%)
(probably week 24-28 Feb, and week 24-28 Mar)
final exam (40%)
(27th May (16h) and/or 2nd July (16h))

EC Arno Formella 2 / 33

bibliography

D. Simon, Evolutionary Optimization Algorithms, ISBN:
978-0-470-93741-9, Wiley, 2013
A.E. Eiben, J.E. Smith, Introduction to Evolutionary
Computing, second edition, ISBN 978-3-662-44873-1,
Springer, 2015
my accompanying webpage:
http://formella.webs.uvigo.es/doc/ec24/index.html

EC Arno Formella 3 / 33

http://formella.webs.uvigo.es/doc/ec24/index.html

evolutionary computation

Evolutionary computation is about optimization.
Evolutionary algorithms are usually randomized or
probabilistic heuristic algorithms.
Many of them are called nature-inspired (or bio-inspired)
algorithms as they exhibit some properties observed in
nature (especially, but not only, from biology).
Programs based on evolutionary algorithms are typically
used to find approximate solutions (but still somewhat
good solutions) to difficult problems.

Disclaimer: we are talking about nature-inspired optimization
algorithms, we are not copying nature, mostly, because I’ve no
idea what nature is doing. We are interested in mathematical
models and certain types of algorithms that serve as powerful
optimization tools.

EC Arno Formella 4 / 33

samples of recent publications in the field

EC Arno Formella 5 / 33

samples of recent publications in the field

EC Arno Formella 6 / 33

samples of recent publications in the field

EC Arno Formella 7 / 33

samples of recent publications in the field

EC Arno Formella 8 / 33

samples of recent publications in the field

EC Arno Formella 9 / 33

samples of recent publications in the field

EC Arno Formella 10 / 33

samples of recent publications in the field

EC Arno Formella 11 / 33

review of recent publications in the field regarding TSP

EC Arno Formella 12 / 33

review of recent publications in the field regarding TSP

EC Arno Formella 13 / 33

the problems we will look at

search of minimum in Real-valued Multi-dimensional
Functions (RMF)
Traveling Salesman (nowadays salesperson) Problem
(TSP)
sorting as an optimization problem (just for fun)

maybe: (0-1)-knapsack problem (KSP)
maybe: p-facility location problem (PMP and PCP)
maybe: some more problems as examples

EC Arno Formella 14 / 33

RMF: Sphere function

f(x) =
d

∑
i=1

x2i

EC Arno Formella 15 / 33

RMF: Ackley function

f(x) =−aexp

−b

√√√√ 1
d

d

∑
i=1

x2i

− exp

(
1
d

d

∑
i=1

cos(cxi)

)
+a+e

EC Arno Formella 16 / 33

RMF: Schaffer 4 function

f(x) = 0.5+
cos2(sin(|x21 −x22|))−0.5
[1+0.001(X2

1 +x22)]2

EC Arno Formella 17 / 33

RMF: Rosenbrock function

f(x) = ∑
i=1

d− 1[100 · (xi+1−x2i)
2+(xi− 1)2]

EC Arno Formella 18 / 33

finding minimum of these functions

For more real-valued functions and common

parameter settings,
search areas,
local/global optima,
and code examples

take a look at
https://www.sfu.ca/~ssurjano/optimization.html
or look for Congress on Evolutionary Computation benchmarks,
for instance 2017 edition https://www.kaggle.com/code/
kooaslansefat/cec-2017-benchmark

EC Arno Formella 19 / 33

https://www.sfu.ca/~ssurjano/optimization.html
https://www.kaggle.com/code/kooaslansefat/cec-2017-benchmark
https://www.kaggle.com/code/kooaslansefat/cec-2017-benchmark

traveling salesperson problem: the problem (here
Euclidean)

the cities distributed geographically (dataset berlin52)

EC Arno Formella 20 / 33

traveling salesperson problem: the solution

the best tour (known for this example): 0% relative error

EC Arno Formella 21 / 33

algorithms

An algorithm is a finite sequence of well-defined steps (or
instructions) to complete a task or solve a problem.
In principal, the individual steps must be executable by a
human being.
The steps (or instructions) must perform a finite change of
state (or configuration) on the system on which the
algorithm is executed.
Completing a task means that there is an other algorithm
that can decide whether the final configuration has the
required property.
The time complexity of an algorithm is the number of steps
the algorithm executes before it stops.

EC Arno Formella 22 / 33

computational complexity

Algorithms can be grouped into classes according to their
time complexity (same is true for space complexity).
For an asymptotic upper bound according to some input of
size n we say:
function f is in the order of function g, whenever we have:

∃c> 0 ∃n0 ∀n> n0 : |f(n)| ≤ c ·g(n)

and we write: f(n) = O(g(n)).
Example: if f(n) = O(n3) then f does not grow faster than
cubic.
There are more notations for other asymptotic
characterizations: o, ω , Ω, Θ.
If you like, take a look at the complexity zoo:
https://complexityzoo.net/Complexity_Zoo

EC Arno Formella 23 / 33

https://complexityzoo.net/Complexity_Zoo

computational complexity
There are arbitrary difficult problems
(there is a hierarchy of classes).
There are problems that don’t have a solution at all
(uncomputable problems)
examples are: decide whether an arbitrary program stops,
decide whether two formal languages are equivalent,
among others.
There are problems where we know that they are
computable (i.e., there exists a solution) but we don’t know
how to compute one. Look into forbidden graph minors in
graph theory.
There are problems for which there are known algorithms,
but we don’t know the smallest class they belong to, e.g.,
unknotting an unknot (take a look into knot theory)
https://en.wikipedia.org/wiki/Unknot or
factorization of numbers https://en.wikipedia.
org/wiki/Integer_factorization.

EC Arno Formella 24 / 33

https://en.wikipedia.org/wiki/Unknot
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Integer_factorization

runtime examples according to complexity

Assume we can deal with 1 million items in 1 second using a
linear time algorithm (i.e., megahertz item processing):

size n function O-notation time
1000000 linear time O(n) 1 second

quasi-linear time O(n logn) 20 seconds
quadratic time O(n2) 11.6 days
cubic time O(n3) 31710 years
quartic time O(n4) 32 billion year

(2.3 times age of universe)
exponential time O(2n) eternal
factorial time O(n!) no words any more

EC Arno Formella 25 / 33

runtime examples according to complexity

Assume we can deal with 1 million items in 1 millisecond using
a linear time algorithm (i.e., gigahertz item processing, 1000
times faster than above):

size n function O-notation time
1000000 linear time O(n) 1 millisecond

quasi-linear time O(n logn) 20 milliseconds
quadratic time O(n2) 16 minutes
cubic time O(n3) 31.7 years
quartic time O(n4) 32 million years
exponential time O(2n) eternal
factorial time O(n!) no words any more

Note: Parallelization on a p-processor machine gives you at
most a linear speedup of p (and most of the time not even that).
Quantum computation offers sometimes (Grover algorithm) a
quadratic speedup regarding input size n.

EC Arno Formella 26 / 33

handable problem sizes according to complexity

Assume 1 nanosecond processing time per item (i.e., 1 GHz
operating frequency), problem sizes handable in one hour:

function O-notation problem size
linear time O(n) 3.6 trillion
quasi-linear time O(n logn) 96.6 billion
quadratic time O(n2) 1.9 million
cubic time O(n3) 15.3 thousand
quartic time O(n4) 1377
exponential time O(2n) 41
factorial time O(n!) 15

EC Arno Formella 27 / 33

algorithm types

deterministic algorithms (i.e., you compute a solution step
by step)
non-deterministic algorithms (i.e., you guess a solution and
check step by step)
randomized or probabilistic algorithms (i.e., you use a die
or a random generator sometimes)
quantum algorithms (i.e., you use superposition from
quantum theory)

Note, all types compute the same set of computable functions,
they differ only in time and space complexity (see below).

EC Arno Formella 28 / 33

When do we consider a problem to be difficult?

A problem is difficult whenever we only know deterministic
algorithms solving the problem that have at least exponential
runtime (or polynomial runtime with a large exponent).

EC Arno Formella 29 / 33

side note: NP-complete and NP-hard problems
Evolutionary algorithms are often mentioned as a way to tackle
NP-complete or NP-hard problems: What does that mean?

A problem is NP-complete when we know a polynomial
time deterministic algorithm that checks a solution, but we
know only an exponential time deterministic algorithm to
find a solution.
A problem is, at least, NP-hard when we even don’t know a
polynomial time deterministic algorithm for the check.
There are problems of which we know that they can be
solved in exponential time, but we don’t know whether they
are NP-complete (or even simpler), e.g., the graph
isomorphism problem, or the unknot problem.
Essentially, we don’t know whether the NP-complete
problems are the same class as the polynomial time
solvable problems.
In other words, we don’t know whether P= NP or P ̸= NP.

EC Arno Formella 30 / 33

graph isomorphism problem

Are these graph isomorph (i.e., have the same structure)?

EC Arno Formella 31 / 33

unknot problem

Are these knots equivalent (i.e., have the same structure)?

EC Arno Formella 32 / 33

the traveling salesperson problem (TSP)
The basic traveling salesperson problems are:

Given n locations or cities and their interconnections in the
2D plane, tell whether there is a closed tour through all
cities that visits each city exactly once and has a length
below a certain threshold.
This is an NP-complete decision problem.
Given n cities in the 2D plane, find a shortest closed tour
through all cities that visits each city exactly once.
This is an NP-hard search problem.
Given n cities in the 2D plane, find all shortest closed tours
through all cities that visit each city exactly once.
This is an exponential time solver problem.
Note, there are n! possible tours through the n cities.
TSP is one of the best studied problems in computer
science.
There are more varieties of TSPs...

EC Arno Formella 33 / 33

