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multi-objective optimization

Given a search space X (called as well search domain or
problem space) and

a set of k functions fi (bounded from below) from the search
space to the real numbers (or at least a totally ordered set), e.g.
fi : X−→ R,

find an element x⋆ ∈ X such that fi(x⋆)≤ fi(x) for all x ∈ X
and all k functions fi .

Maybe there is no point in X that minimizes all the k functions
simultaneously, then we look for Pareto-optimal solutions, i.e.,
solutions that cannot be improved without worsening at least one
of the other objective functions.
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Pareto front

Remind we have more than one independent objective function

Pareto optimal (global): every other component for all other
solutions is worse (or equal)
(other names are: efficient points, dominant points, non-interior
points)

Pareto optimal (local): every other component for all other
solutions in a local neighborhood is worse (or equal)

Hence, the Pareto frontier describes the trade-off between the
different objectives.
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Dominant points and regions
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Pareto front

Example of a Pareto front with two marked non-dominated points:
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Pareto front

Example of a Pareto front for two objectives (on measured data):
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Multi–objective optimization

How can we find a good solution to the optimization problem with more
than one objective function?

convex combination of the objectives

homotopic techniques, i.e., compute the entire Pareto frontier,
for instance with a population based algorithm, and select later...
(to obtain the Pareto frontier one might explore the coefficient
space of the convex combination)

goal programming, i.e., fixed values for all objectives and
minimize the distance of all objectives to the predefined goals
(according to some convenient distance metric)
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Multi–objective optimization

priority optimization, i.e., fix thresholds for all but one objective
function beforehand and optimize above the threshold according
to the most important one

priorization (multi-level) programming, i.e., optimize according to
a predefined ordering of the objective functions.

fixed trade-off, i.e., find the point in the Pareto front that is tangent
to a certain hyperplane (especially usefull when Pareto front is
convex and low dimensional).
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Optimization with restrictions (or constraints)

In many application there are restrictions (or constraints) that limit the
optimization process:

find an element x⋆ ∈ X such that fi(x⋆)≤ fi(x) for all x ∈ X
and all k functions fi and

a certain number L of inequality constraints
gj(x)≥ 0 (for all j ∈ [1 : L]) are fulfilled, and

a certain number E of equality constraints
hn(x) = 0 (for all n ∈ [1 : N]) are fulfilled.

Simple constraints are for instance so-called box-constraints, i.e., the
search space is confined in each dimension by an interval.

Such box constraints are often handled separately in the optimization
packages.
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Optimization with restrictions (or constraints)

The inequality and equality constraints again might be linear or
non-linear functions.

Due to the restrictions there might arise points (elements of the
search space) during the optimization process which are
unfeasible, i.e., no valid objective function values can be
computed (or even the objective function cannot be computed at
all).

Sometimes even trying to find some feasible solution is already a
very complex task (for instance: for TSP with time windows the
problem is already NP-hard).
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Optimization with restrictions (or constraints)

To tackle constraints there are two main classical approaches:

use of penalties, i.e., assign a sufficiently large values to the
objective function(s)

use of interior methods, i.e., make sure not to leave the feasible
region
(main idea: use the fulfillment of the constraints as additional
objective function building a so-called barrier function with an
additional parameter µ that is continuously shrinked to reach
zero.)
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Multi–objective optimization with evolutionary methods

Evolutionary methods can approximate the Pareto frontier in
parallel (with the help of the diversity among the individuals).

For instance particle swarm systems varying the weights of a
convex combination periodically during the iterations.

For instance a genetic algorithm can hold a population that tries
to converge (in some sense uniformly) towards the Pareto front.
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multi-objective evolutionary algorithms (MOEA)

VEGA, vector evaluated genetic algorithm
Idea: in the selection process parts of the mating parents are
selected according to each objective function

MSGA, multi-sexual genetic algorithm
Idea: individuals are marked as belonging to a certain objective
function, ranking is used to select parents, only differently marked
individuals are used to generate children

NSGA, non-dominant sorting genetic algorithm
Idea: sort individuals according to their dominance, and design
the selection according the dominance classes (i.e., work with
several frontiers, intending to converge eventually to the Pareto
front.
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multi-objective evolutionary algorithms (MOEA)

NSGA-II, including elitism, dominant individuals are preserved in
population, clustering is avoided

SPEA, strength Pareto Evolutionary algorithm
Idea: maintain a fixed set of best individuals while guaranteeing
that they are spread over the Pareto front without to much
clustering
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Simulated Annealing

The name and idea stems from the slow and repeated heating and
cooling process of certain materials (usually alloys of different metals
with addings, e.g., iron+carbon) until certain properties are achieved.

https://en.wikipedia.org/wiki/Simulated_annealing
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Simulated Annealing

Explores a neighbor in the search space, whenever there is an
improvement in the objective function at the neighbor or it is not
worse than a temperature dependent threshold with some
probability.

Let ∆f be the difference between current solution f and neighbor
solution fn.

Let T be a temperature.

Then the neighbor is accepted whenever either ∆f < 0
(we are going downhill)
or if e−∆f/T > r , for r being a random value in [0 : 1]
(we are going uphill).

With increasing iteration rounds, i.e., during a certain number of
iterations the temperature is held constant, the temperature is
reduced, hence, the threshold converges towards zero.
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Simulated Annealing cooling schemes

linear cooling: T = T0 −ηk
with T0 an initial temperature, k the iteration number and η some
free parameter, being constant during optimization.
(To avoid negative temperature: T =max(T0 −ηk ,Tmin))
exponential cooling: T = aT
with a ∈ [0.8,1) typically; slower cooling the a close to 1.
inverse cooling: T = T/(1+βT )
with β being a small constant (e.g. β = 0.001).
logarithmic cooling: T = T0/ logk
with c a suitable constant.
(Used as well a generalization: T = T0/ log(k +d)).
Not really practical in applications but was used to prove
convergence to global minimum under certain conditions.
inverse linear cooling: T = T0/k .
Not really practical in applications but was used to prove
convergence to global minimum under certain conditions.
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