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PSO: different versions

binary version: the variables are interpreted as binary values
according to a distribution or threshold

discret version: the variables are interpreted as integer values
(for instance with simple rounding)

dynamic version: the search space is reinitialized and/or the local
variables are reset (type of outer Monte Carlo loop)
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PSO: convergence

the individuals should exhibit certain diversity
(recall the similarity measures)

diversity can be forced dynamically by adapting the parameters
alongside the simulation time

or one might use the lack of diversity as a stopping condition
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ant colony optimization (ACO)

The idea stems from stigmergy: exercise indirect communication and
coordination through the environment
(leave a trace and act on findings).

The inspiration stems from ants, bees, termites, wasps, etc.

The individuals of a population leave information (pheromones) in
the search space.

The decisions are based on individual information or behavior
and on the pheromones encountered.

The information (pheromones) is volatile and can evaporate.

The pheromones or a statistical evaluation of the individuals
define the solution.

Initially invented to deal with combinatorial problems (like TSP).
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ACO: principal loop

An ant colony optimization can be summarized in the following
principal loop:

InitializePheromoneValues()
while not Stopping():

for individuals in range(n):
ConstructSolution(individual)
UpdatePhermoneValues()
UpdateIndividuals()

EC Arno Formella 5 / 21



ACO: how TSP can be approached

The ant colony optimization takes place on the graph of the
underlying problem (e.g., the complete graph among all cities).
The ants are placed at the cities.
The initial pheromones are placed on the edges
(either constant value or inversely proportional to the distance).
The ants (in an appropriate iteration) run along a path in the
graph (excluding already visited cities) and draw at each city a
decision in which direction to continue.
The decision is based on: pheromones on each possible edge,
maybe on some own information stored at the individual, and on
a random value.
Once the tour is completed for all ants, all of them deposit their
pheromone on their tracks.
The general evaporation process is applied to all/changed edges.
The currently best tour is memorized.
The iteration is repeated until a certain stopping condition is met.
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ACO: when to use?

ACO approaches are especially possible when the underlying problem
allows for a constructive solution (as seen with the nearest-neighbor
heuristic for the TSP).

Simon gives the example that an ACO approach found a tour with 3%
deficit on the Berlin52 problem.
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The no-free-lunch theorem

The no-free-lunch theorem states that the performance of all
optimization (search) algorithms, amortized over the set of all possible
functions, is equivalent. The implications of this theorem are far
reaching, since it implies that no general algorithm can be designed so
that it will be superior to a linear enumeration of the search space
(exhaustive search).
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What are practical implications of the no-free-lunch
theorem?

Each problem (or each type/class of problem) might need its own
and proper optimization method.

Maybe for interesting problems we find good optimization
algorithms (we are not interested in all problems).

Benchmarking optimization algorithms is a challenge, as general
benchmarks might just provide average data, but our algorithm
might be special for a niche of problems.

There is a need to categorize problems and algorithms to obtain
some insight on which type of problem a certain type of algorithm
performs well.
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How to compare different approaches?

In order to compare different algorithms one might take into account:

wall clock runtime on comparable systems

(average) number of objective functions evaluations
(but the rest of the inverted time must not be neglected)
difficult to be used when comparing constructing algorithms

the result as distance to optimium or to some known lower bound

mean best fitness

properties of the solution histogram (fitness of all solutions found)

scaling properties with problem size (applied to any measure
above)

EC Arno Formella 10 / 21



Practical aspects to be considered

One has to decide what is really needed:

need a good (or best) solution independent of runtime
(e.g. controler for space telescope or the evolved antenna)

need a moderate solution fast
(e.g., daily TSP with time windows, where finding a feasible
solution is already NP-hard)
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Local search methods

local search methods explore the search space by inspecting
(close or far) neighbor solutions
they stop at a local minimum, i.e., all neighbors are greater
(remind: we searching for a minimum)
a classical example is the simplex method for linear programming

or the Newton method (or Newton-Raphson method) applied to
optimization (here formulated as maximization)
while GradientFobj(xi) > tolerance:
xi=xi-GradientFobj(xi)/SecondDerivativeFobj(xi)

(Take care: should check if eventually really maximum, and not
minimum.)
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Local search methods

Further classic iterative optimization methods for the minimization of
real-valued functions that need gradient information, are:

Gauss-Newton method (variation of the Newton-method by using
the Jacobean-matrix instead of the Hessian-matrix)
second derivatives are not required here

gradient descent (or steepest decent)

Levenberg-Marquardt methods (interpolation between
Gauss-Newton methods and gradiant descent)
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Local search methods

Further classic iterative optimization methods for minimization of
real-valued functions that don’t need gradient information, are:

Nelder-Mead method (heuristic), converges to a stationary point
(minimum, maximum, or saddle, i.e., gradient is zero)

idea: shrink, reflect, and expand a simplex (triangle in 2D), by
evaluating the objective function on corners and faces (edges in
2D)

García-Palomares method, converges to a local minimum

idea: explore the neighorhood according a random local spanning
coordinate system and proceed at a point that has been found
with a sufficiently steep descent (otherwise iterate with smaller
tolerance)
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Local search for traveling salesperson problem

Idea: define a local operation that changes a given tour into another
tour:

2-opt move:

3-opt move:

k -opt move

Lin-Kernighan-heuristics (LKH) is a combination of 2-opt, 3-opt,
and rare k -opt moves (recall, still state-of-the-art to solve TSP)
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Use of local search

Observe: local search methods can be used in any other optimization
algorithm in order to (try to) converge to a local minimum. That is
exactly what LKH (Lin-Kernighan-Helsgaun, the very good
implementation) does. However:

Can all tours be reached with 2-opt moves? (when starting with a
certain initial tour) ...still an open question

There are worst case scenarios where the 2-opt heuristics has
exponential runtime until convergence.

What about 3-opt, or k -opt, moves? ...still an open question
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Reactive Tabu Search

start with a feasible solution (e.g., with some heuristics)

search for possibilities to improve the current solution (e.g.,
search in the neighborhood)

if we can improve: choose one, the best or a random one.
if we cannot improve (i.e., trapped at a minimum):

search for possibilities to worsen the current solution
if we can escape: try again improvements
if we cannot escape: jump to another feasible solution
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The Tabu criterion

avoid repetitive movements taking advantage of a memory that
stores forbidden intermediate solutions
(or forbidden specific features of the current neighborhood
search)

i.e., mark certain movements as tabu for a certain number of
iterations, i.e.,the memory is volatile!

reactive means that the tabu period is dynamically adapted,
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psm: point set match for proteins

A template and graph based method with local search and use of
domain knowledge for approximate match.

searching a 3D-structure (34 atoms) in a protein (50000 atoms)
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psm: point set match for proteins

psm finds, for instance, six locations:
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things to take into account

the search space and/or the objective function can be:

discrete continous
total partial

simple complex
explicite implicite

modelado experimental
linear non-linear

convex non-convex
differentiable non–differentiable

single-objective multi-objective
constrained unconstrained

static dynamic

We have seen already a lot of examples of all kind.
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