
Evolutionary Computation
2023/24

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

23/24

EC Arno Formella 1 / 24



GA: selection

In the principal loop, there are two selection processes:
How to select the parents to generate the off-springs? and
How to rearrange the final population or next generation?

We use the following notation:
µ stands for the number of individuals in the population
λ stands for the number of children being generated

We distinguish two main strategies:
(µ +λ )-strategy

from the µ individuals of the current generation select the parents
and generate λ children
from the µ +λ individuals choose the µ best ones as new
generation

(µ,λ )-strategy
from the µ individuals of the current generation select the parents
and generate λ ≥ µ children
from the λ children choose the µ best ones as new generation

The second question from above is answered.
EC Arno Formella 2 / 24



GA: selection options

To select the parents being allowed to have off-springs,
there exists a bunch of suggestions:

roulette wheel: assign to each individual a fraction of the wheel
according to its relative fitness and spin the wheel
(variation: smooth, weight, or normalize the fitness
somehow, e.g., use log of objective function, or use
z-score)

rank based: order the individuals according to fitness and select with
a probability weighted by the rank
(variation: compute selection probability with linear
function of rank, so the least ranked still gets certain
probability to get selected)

EC Arno Formella 3 / 24



GA: selection options (continued)

tournament based: draw a certain number of random individuals,
select the best one as parent
(variation: select directly the best two as parents)

truncation selection: only the individuals with highest fitness values
will be parents

what-ever-you like: remember, do something, be happy...

The first question (from two slides earlier) is answered.

EC Arno Formella 4 / 24



GA: initialization

generate the initial population with random genomes
take into account that a distribution in genotype not necessarily is
similar to the same distribution in phenotype
there are maybe many individuals with very low fitness
the initial convergence rate might be slow

generate the initial population with individuals from another
heuristic algorithm or various such algorithms

the population might be biased into a certain region of the search
space
the diversity of the population might be low
the convergence rate might be trapped early in a local optimum

recommendation: use a mixture of both

EC Arno Formella 5 / 24



GA: termination criteria

There are many possibilities when to stop the iteration of a genetic
algorithm:

once the first solution has been found

once a sufficiently good solution has been found

once the optimum has been found

once a certain number of iterations has been executed

once the diversity of the population is below a certain threshold

once the convergence rate of the improvement is below a certain
threshold

once a certain amount of runtime has been spent

recommendation: use an or-mixture of all

EC Arno Formella 6 / 24



GA: results for the example (2007)

119 of 149 nodes used 24 of 149 nodes used

EC Arno Formella 7 / 24



GA: use for antenna design (small satellites)

Horny, AlGlobus, Linden, Lohn: Automated Antenna Design with Evolutionary Algorithms

EC Arno Formella 8 / 24



GA: diversity

The diversity measures, in some sense, the non-similarity
between the individuals of a population.
E.g., Hamming-distance over the bitstring (using exor):
010010⊗101000 = 111010 −→ 4
e.g., delta-distance over the integer (or real) sequence:
∑i |xi − x ′

i | (being x and x ′ two individuals)
There are much more similarity measures.
similar individuals in a population reduce the diversity and the
genetic algorithm maybe gets stuck in some region of the search
space (maybe, but not necessarily, a local minimum).
To augment the diversity, we have only the mutation operation,
provided the mutation becomes visible in the next generation.
(Observe: whenever an allele disappears in a population, most of
the crossover operations cannot regenerate it!)
Another possibility is just to regenerate a completely or partially
new population.

EC Arno Formella 9 / 24



GA: elitism

We have to draw the decision whether the best individual(s) is (are)
forced to belong unmodified to the next generation.

Elitism might help to converge faster.

Elitism might reduce diversity faster.

The consequences of this trade-off are problem dependent.

EC Arno Formella 10 / 24



GA: final remarks

The difficulties of understanding and analizing genetic algorithms
lie in the fact that they implement a combination of random
search (by mutation) and biased search (by recombination).

Genetic algorithms need unique and problem-specific mutation
and recombination operators, which makes it more challenging to
implement a generic version that can be easily applied to different
optimization problems.

Nature still has its somewhat better approach: DNA, RNA, gene
expression, proteins, and mitochondria (mtDNA)...

EC Arno Formella 11 / 24



evolutionary programming (EP)

Once we have seen genetic algorithms, evolutionary programming is
somewhat simpler: it just uses mutation.

there exist only the phenotypes, let’s say xi (for i = 1, . . . ,n),
i.e., n individuals in the population

modification (mutation) is realized over the phenotypes as:

x ′
i = xi + ri

√
β f (xi)+ γ

being β > 0 and γ ≥ 0 tuning parameters (for instance β = 1 and
γ = 0) and ri is a random value taken from a normal distribution
with mean 0 and variance 1 (i.e., ri ∈ N[0,1]n).

Note that the fitness (objective function f ) must be shifted, so the
minimum is positive.

Usually a (µ +µ)-selection strategy is used: all individuals are
mutated and the best µ individuals are kept.

EC Arno Formella 12 / 24



EP: principal loop

A evolutionary programming algorithm can be summarized in the
following principal loop:

InitializePopulation()
EvaluateIndividuals()
while not Stopping():

GenerateChildrenByMutation()
EvaluateIndividuals()
ReestablishPopulation()

EC Arno Formella 13 / 24



differential evolution (DE)

Once we have seen genetic algorithms, differential evolution is
somewhat simpler: it just uses a special type of recombination.

there exist only the phenotypes, let’s say xi (for i = 1, . . . ,n), i.e.,
n individuals in the population

For each individual we select three other individuals, say xj ,xk ,xl ,
to compute a mutant vector vi

vi = xj +F · (xk − xl)

being F ∈ [0.4,0.9] (usually) a tuning parameter.

Then we generate an off-spring with a uniform crossover between
individual xi and mutant vi using a certain threshold c

Usually a (µ +µ)-like selection strategy is used: all individuals
are used to generate off-springs, and the best are kept.

EC Arno Formella 14 / 24



DE: principal loop

A differential evolution algorithm can be summarized in the following
principal loop:

InitializePopulation()
EvaluateIndividuals()
while not Stopping():

GenerateChildrenByDiffusion()
EvaluateIndividuals()
ReestablishPopulation()

EC Arno Formella 15 / 24



DE: some variations

One might consider to use always the best individual found so far
as individual xj .

The tuning parameter F might vary, i.e., taking the value from a
uniform or a normal distribution.

One might use DE on discrete sets as well by just rounding the
mutants appropriately (or search in the close integer
neighborhood according to the dimension of the underlying
problem).

(My opinion) Differential evolution is not just a genetic algorithm,
as there is no genotype, rather the other way round: a genetic
algorithm using the phenotype as genotype, no mutation, and a
random recombination, becomes a differential evolution
algorithm.

EC Arno Formella 16 / 24



genetic programming (GP)

Once we have seen genetic algorithms, genetic programming is a
genetic algorithm with some special phenotypes and genotypes.

the genotype is a (simple) program described as a syntax tree
that can be written as well with Polish notation (prefix notation),
see next slide...

the parenthesis can be eliminated, interpretation of the
corresponding expression is easy to perform with a stack
automaton.

some properties of the execution of the resulting program (as
phenotype) are used as fitness (see example, later)

EC Arno Formella 17 / 24



GP: syntax tree

syntax tree and Polish notation

(2.2-(x/11))+(7*cos(y))

(+ (- (2.2 (/ X 11))) (* (7 cos(Y))))

+ - 2.2 / X 11 * 7 cos Y

image taken from wikipedia

EC Arno Formella 18 / 24



GP: mutation and crossover operations

the programs are modified with adecuate mutation and crossover
operations
mutation:

change a node, but take care to keep a valid syntax tree (maybe
subtrees must be removed or added)
rotate nodes
interchange nodes

crossover: interchange a subtree of one parent with a subtree of
the other parent

EC Arno Formella 19 / 24



GP: example

Program a robot (ant) that starts at some cell (usually a corner) and
tries to find as many objects (food) with as few steps as possible.

Santa Fe Trail

nodes: turn-left, turn-right, move, if-food-ahead

EC Arno Formella 20 / 24



particle swarm optimization (PSO)

The inspiration comes from social behavior of individuals within
an environment including other individuals.

We work with n individuals that move in a continuous
d-dimensional search space.

The individuals move (in steps) through the search space and
adjust their velocities according to information gathered from
others (and their own histories).

The individuals are grouped into neighborhoods.

EC Arno Formella 21 / 24



PSO: velocity actualization

xi vector of current positions

vi vector of current directional velocities

bi best local position vector

hi best neighbor position vector

ϕ1 = 2.05,ϕ2 = 2.05 influence values (just some magic)

ξ ∈ [0.4,1], e.g. ξ = 0.729 inertia reduction value

velocity actualization

vi = ξ vi +U[0,ϕ1]◦ (bi − xi)+U[0,ϕ2]◦ (hi − xi)

xi = xi + vi

The ◦ operator is either a Hadamard-operation (i.e.,
component-wise), or a linear operation (i.e., scalar multiplication)

EC Arno Formella 22 / 24



PSO: principal loop

A particle swarm optimization can be summarized in the following
principal loop:

InitializePopulation() # i.e. x_i, v_i
EvaluateIndividuals() # i.e. b_i
DefineNeighborhoodSize()
while not Stopping():

DetermineNeighborhoodValues() # h_i
UpdateIndividuals() # i.e., x_i, v_i, b_i

EC Arno Formella 23 / 24



PSO: some more details

The velocity can be confined not to pass a certain maximum
velocity, which helps to avoid explosion, i.e., that the area of the
search space being explored becomes exponentially larger.

Initial velocities can be zero or some random values.

Small neighborhoods tend to provide a better global search, while
large neighborhoods tend to produce a faster convergence (but
maybe premature).

Neighborhoods can be defined as nearest neighbors, as fixed and
overlapping, or entail the entire population, or what-ever-you-like.

The inertia reduction can be increased with the simulation time.

The best global individual g can be included in the equation: add
+U[0,ϕ3]◦ (g− xi)

The worst (local and global) positions can be avoided: add
−U[0,ϕ4]◦ (bi − xi) and/or −U[0,ϕ5]◦ (hi − xi) and/or
−U[0,ϕ6]◦ (g− xi)

EC Arno Formella 24 / 24


