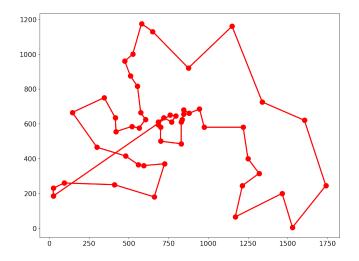
Evolutionary Computation 2023/24 Master Artificial Intelligence

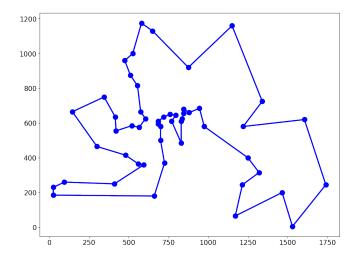
Arno Formella

Departamento de Informática Escola Superior de Enxeñaría Informática Universidade de Vigo

23/24

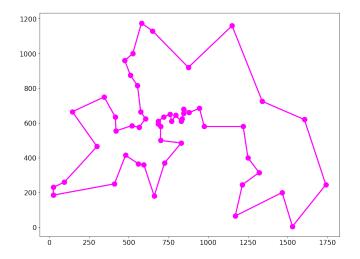


a closest-neighbor tour: 8.49% relative error

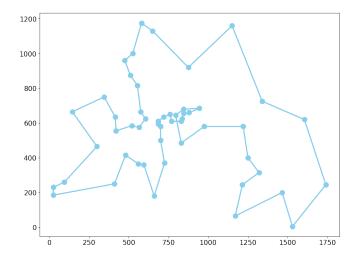


a pair-center tour: 7.28% relative error

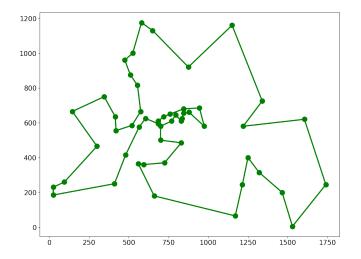
3 / 239



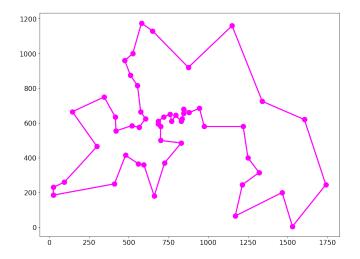
the best tour (known for this example): 0% relative error



a quick tour (with Monte Carlo): 2.32% relative error



a genetic algorithm tour: 8.37% relative error



the best tour (known for this example): 0% relative error

- simple bound: sum of minimal distances to neighbors
- Held-Karp bound

(typically comes close to 1% on random instances and below 2% on TSPLIB, arguments for the bound are quite complicated)

- tour around minimal spanning tree yields $\leq 2 \cdot L_{opt}$ runtime $\mathcal{O}(n^2)$
- Christofides algorithm yields ≤ 1.5 · L_{opt} runtime 𝒪(n² log n)

known solving algorithms for TSP

- brute force exhaustive search 𝒪(n!) (quite easy to implement)
- Bellman-Held-Karp dynamic programming for Euclidean TSP
 𝔅(n²2ⁿ) time and 𝔅(n2ⁿ) space
 (not covered here, please refer to advanced algorithms in computer science)
- state-of-the-art solver Concorde.
- state-of-the-art approximative solver LKH.

start with some small tour generated by a simple heuristic, then:

- use 2-opt moves (modifing tour by changing two edges, for instance, to eliminate crossings in Euclidean TSP);
- or use 3-opt moves (modifing tour by changing three edges);
- or use Lin-Kernighan heuristic algorithm (variable mixture of 2-opt and 3-opt moves), currently the best known heuristic strategy.

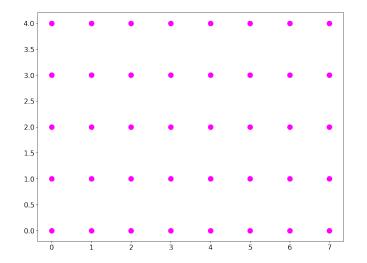
let's take a look at a regular $m \times n$ grid (e.g. checker board)

- an optimal tour on a regular grid is easy to build
- optimal length:
 - $L_{opt} = n \cdot m$ if *n* or *m* even
 - $L_{opt} = n \cdot m 1 + \sqrt{2}$ if $n \cdot m$ odd
- there are many! optimal tours

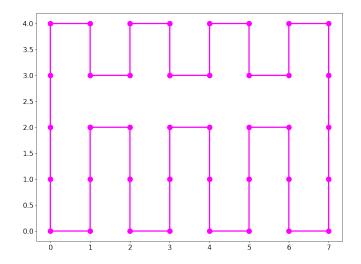
More on traveling salesperson problem

- The version of the TSP problem as shown until now is a special case of a more general problem definition:
- Let G = (V, E) be a graph. V are the nodes (or locations), E are the edges (or connections) with some weight (e.g., distance, time, cost).
- Goal: find a minimal tour through all nodes.
- Particularly we talked about the Euclidean TSP, where the nodes are points in the Euclidean plane and the distance among all pairs, hence complete graph, is just the Euclidean distance.
- One step to be more general is, just require the triangular condition to be met (then, possibly, the pair-center approach cannot be used as we have no distances for the centers), this is called the metric TSP (mTSP).
- Moreover, the distances might be asymmetric, i.e., going in one direction is different from going in the other (ATSP).
- or we have additional conditions: open loop, arrival time windows, asymmetric distances, interrupted tours, etc.

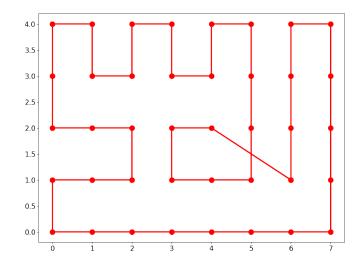
- In the 90's it was shown that eTSP can be solved in $\mathcal{O}(2^{O(\sqrt{n}\log n)})$.
- In the 10's this was improved to 𝒪(2^{√n}), and with certain arguments that further improvement may be very unlikely.
- One recent result of complexity theory is that eTSP has a polynomial time approximation scheme (PTAS) of *O*_{ε,d}(nlog n) (with fixed error ε and fixed dimension d), however, an implementation is not available (to my knowledge).
- This has been improved to $\mathscr{O}_{\varepsilon,d}(n)$ with high probability (2013).



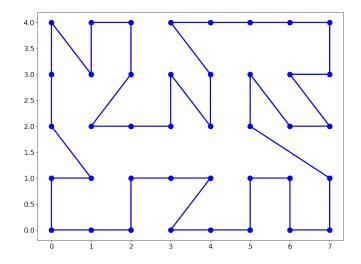
the cities distributed geographically



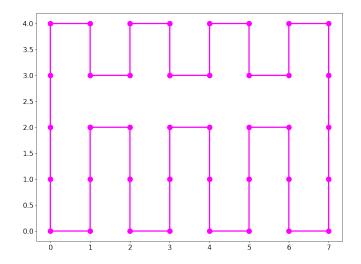
a best tour (trivial for this example): 0% relative error



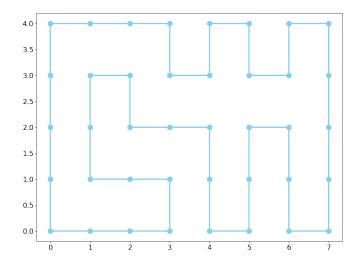
a closest-neighbor tour (with Monte Carlo): 3.09% relative error



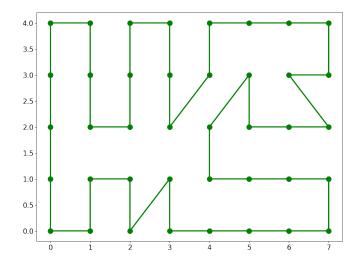
a pair-center tour: 14.46% relative error



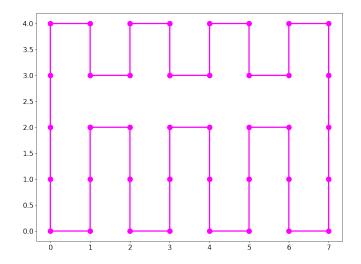
a best tour (trivial for this example): 0% relative error



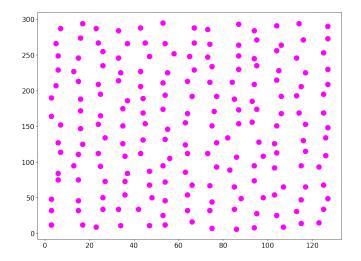
a quick tour (with Monte Carlo): 0.00% relative error



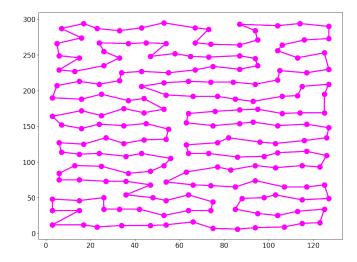
a genetic algorithm tour: 4.14% relative error



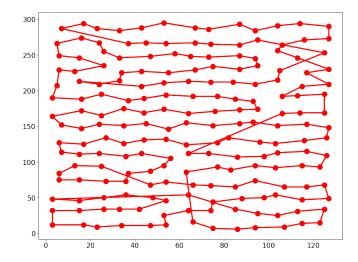
a best tour (trivial for this example): 0% relative error



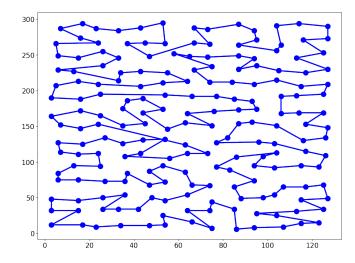
the locations distributed in the plane



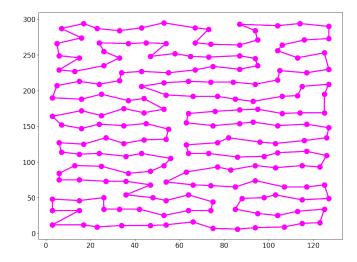
the best tour (known for this example): 0% relative error



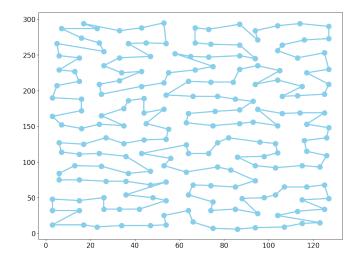
a closest-neighbor tour (with Monte Carlo): 10.23% relative error



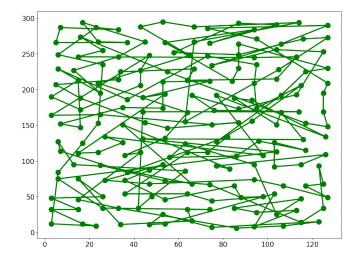
a pair-center tour: 13.93% relative error



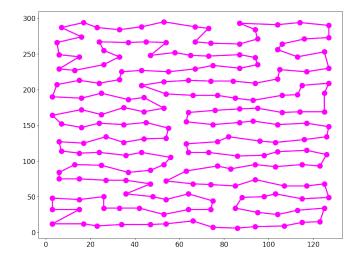
the best tour (known for this example): 0% relative error



a quick tour (with Monte Carlo): 9.66% relative error



a genetic algorithm (GA) tour: 205.65% relative error



the best tour (known for this example): 0% relative error

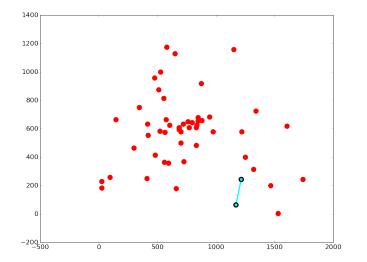
errors for the above heuristics

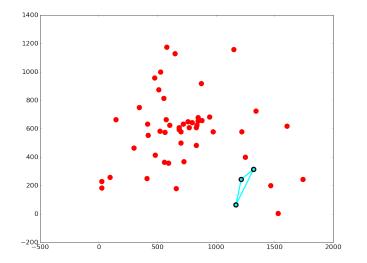
oroblem	heuristic	relative error
berlin52	closest neighbor tour	8.49
	quick tour	2.32
	pair-center tour	7.28
	genetic algorithm tour	8.37
	pair-center tour improved	0.00
	Lin-Kernighan tour	0.00
rat195	closest neighbor tour	10.23
	quick tour	9.66
	pair-center tour	13.93
	genetic algorithm tour	205.65
	pair-center tour improved	1.16
	Lin-Kernighan tour	0.00
block40	closest neighbor tour	3.09
	quick tour	0.00
	pair-center tour	14.46
	genetic algorithm tour	4.14
	improved pair-center tour	0.00
	Lin-Kernighan tour	0.00

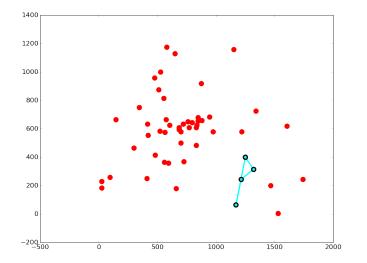
Your goal: make GA-tour consistently better than pair-center tour or quick tour.

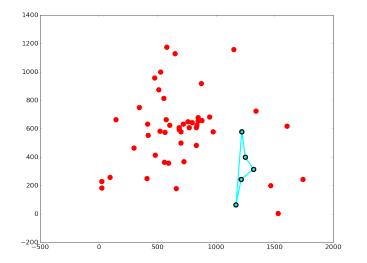
The classical closest-neighbor algorithm is a greedy algorithm with a small random component:

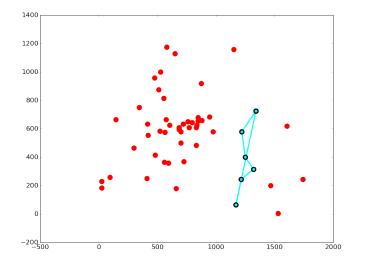
- select a random city
- while there are still unconnected cities
 - connect to the closest unconnected neighbor
 - use a random tie break
- connect the first with the last city
- runtime is $\mathcal{O}(n^2)$,
- can be run in Monte Carlo fashion keeping the shortest tour
- worst tour may have a length up to $0.5 \cdot \log n \cdot L_{opt}$

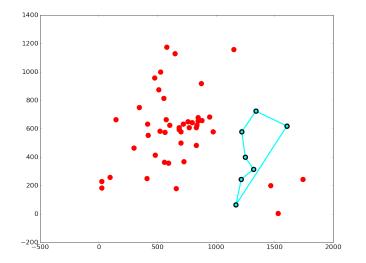


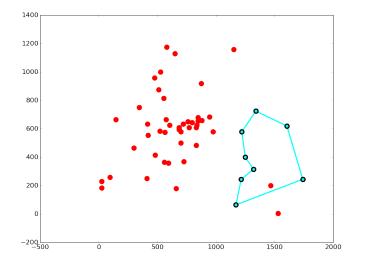


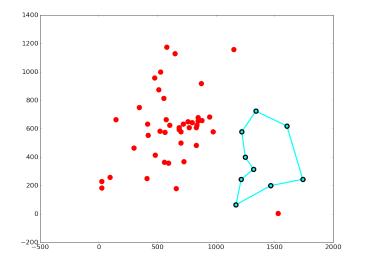


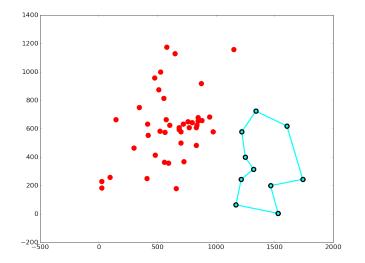


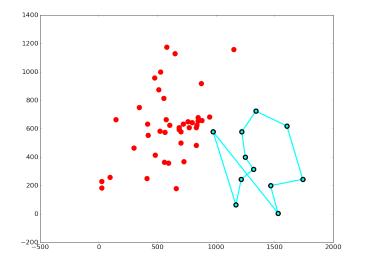


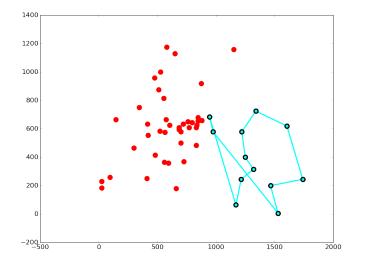


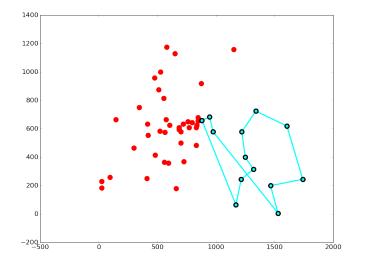


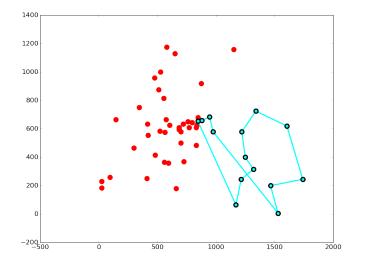




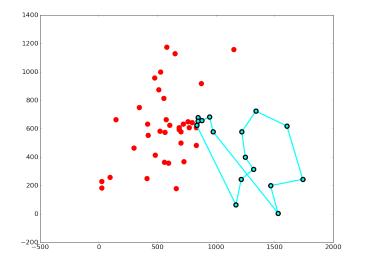


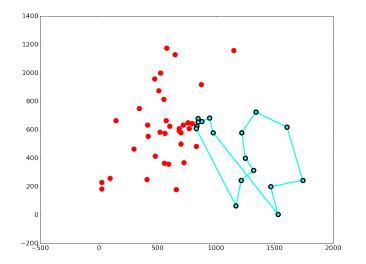


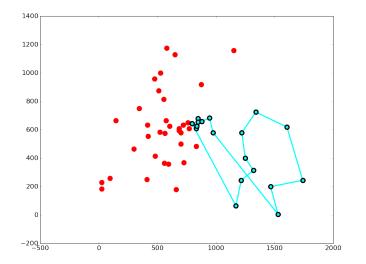


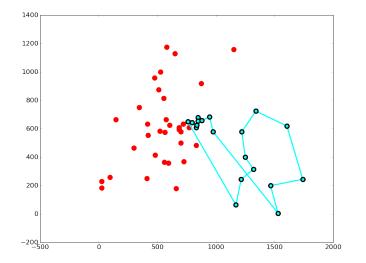


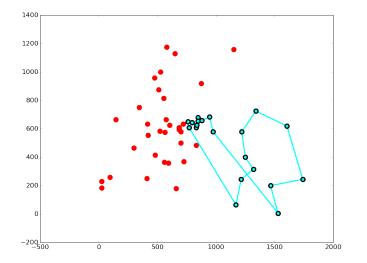


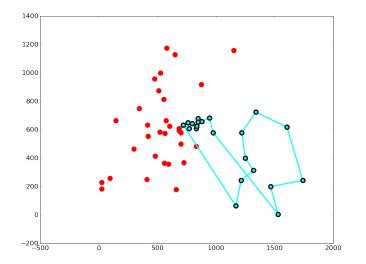


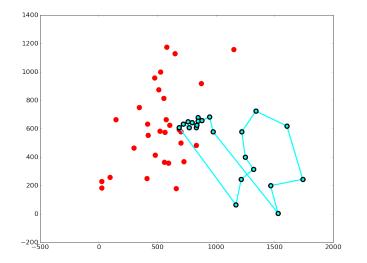


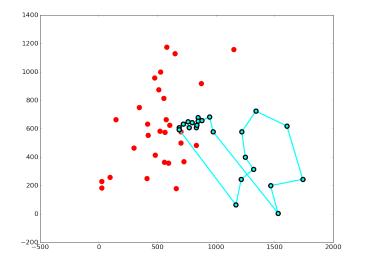


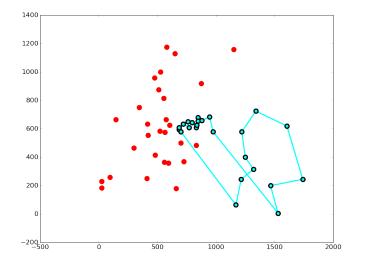


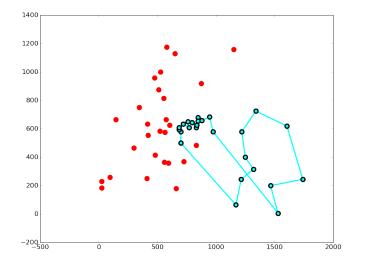


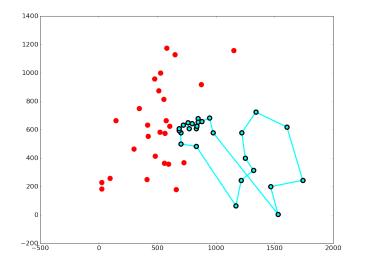


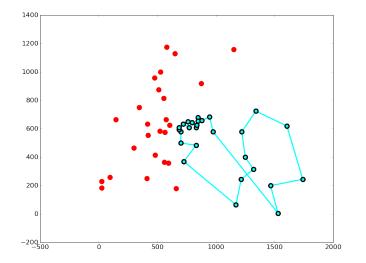


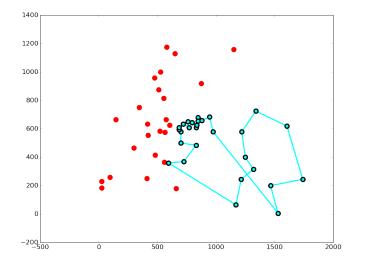


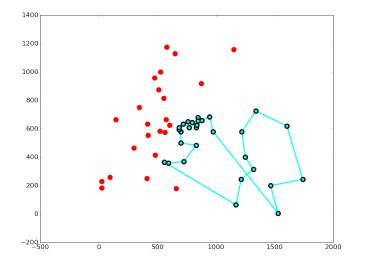


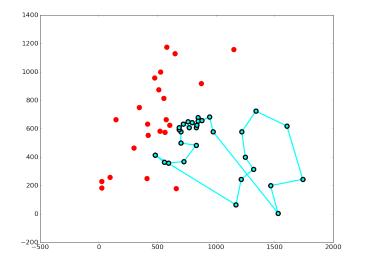


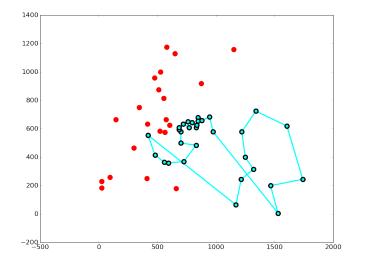


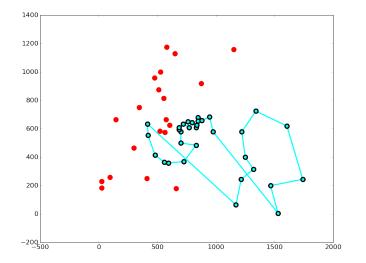


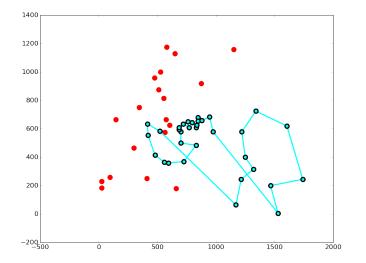


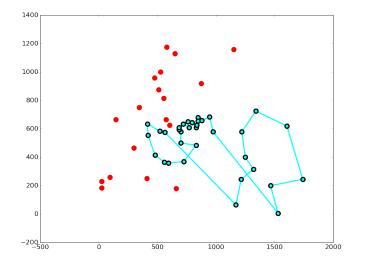


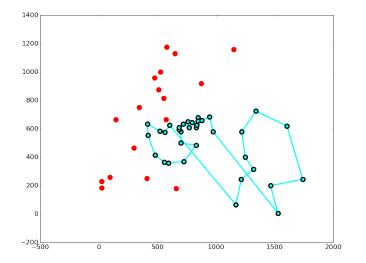


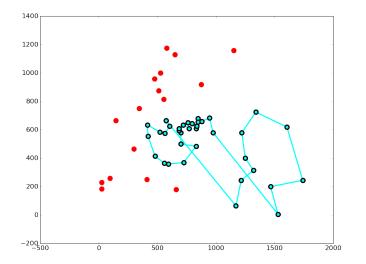


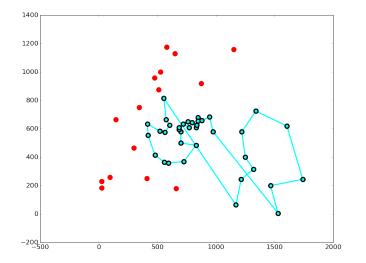


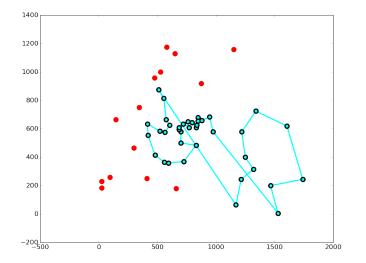


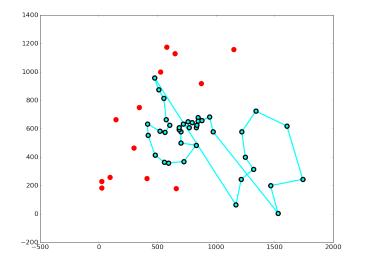


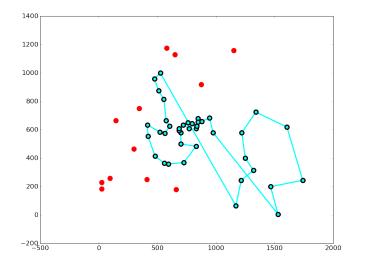


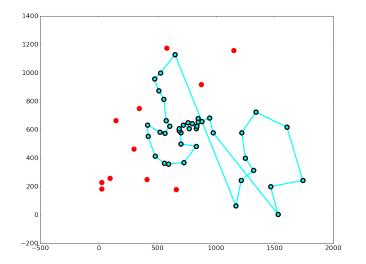


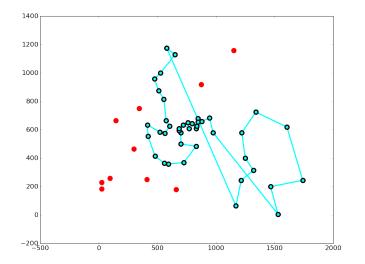


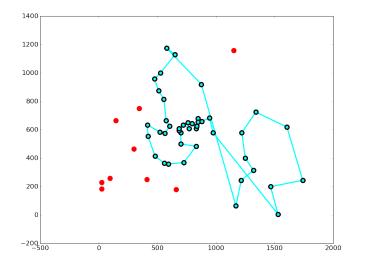


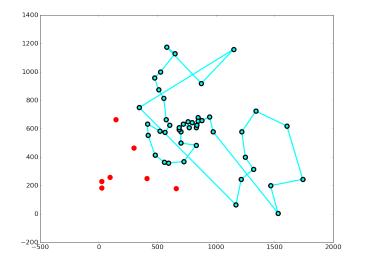


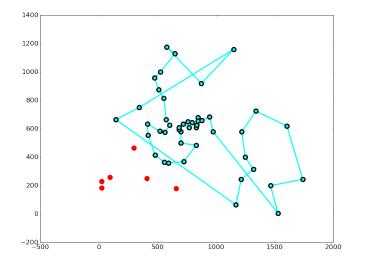


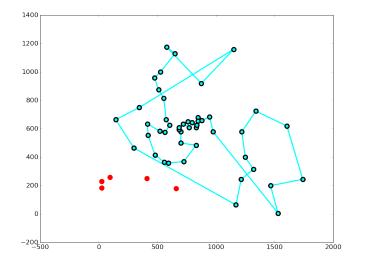


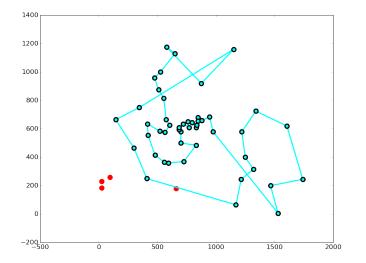


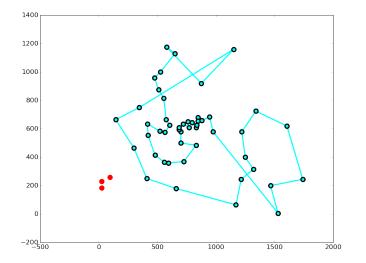


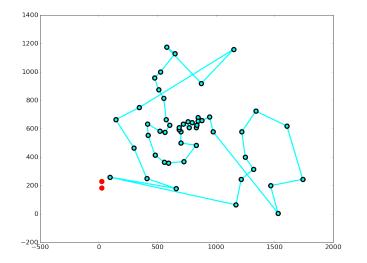


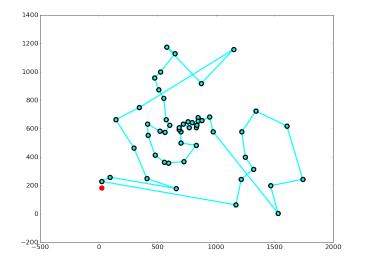


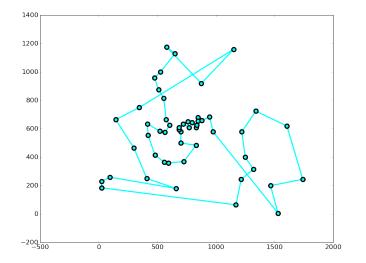










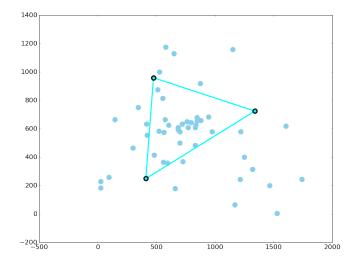


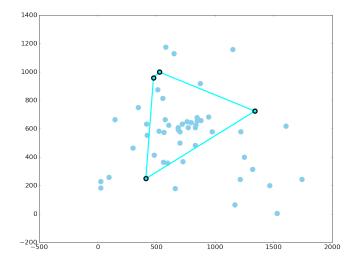
How does the quick tour algorithm work?

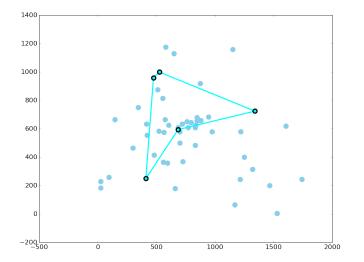
The quick tour algorithm is my own contribution (but found to be known as *insertion/addition approach*) for this course. It is a probabilistic greedy algorithm:

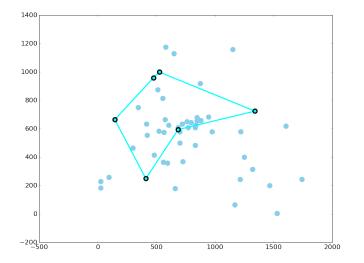
- select three random cities to form an initial triangular tour
- while there are still unconnected cities
 - choose a random (closest) unconnected city
 - expand the current tour by inserting the new city such that the tour increment is minimal
- runtime is in $\mathcal{O}(n^2)$,
- the random version can be run in Monte Carlo fashion keeping the shortest tour
- worst tour may have a length up to 2 · L_{opt}

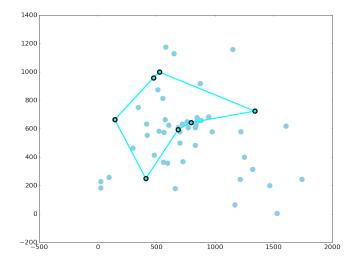
There are more similar approaches, e.g., nearest addition or farthest addition.

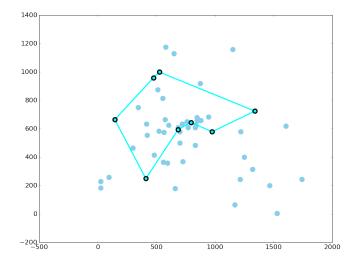


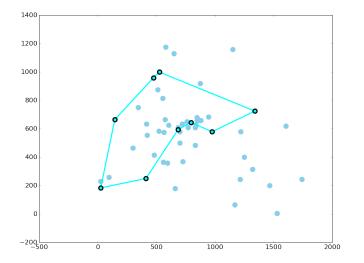


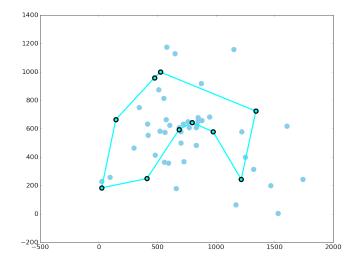


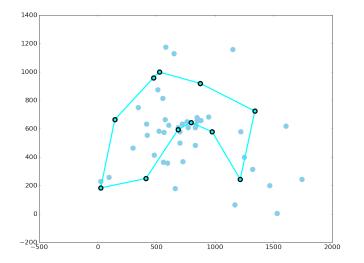


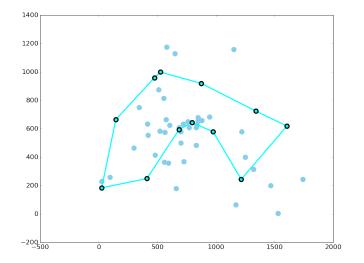


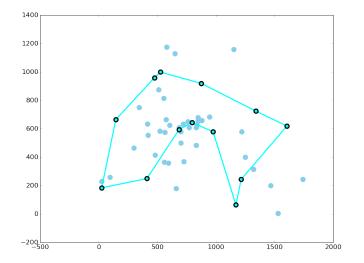


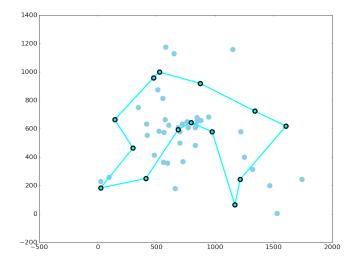


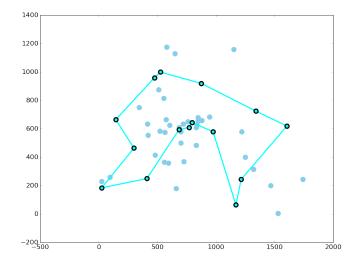


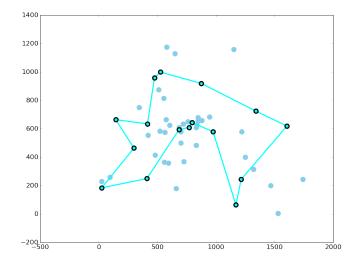


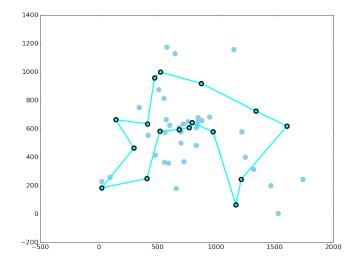


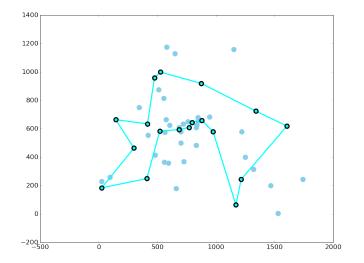


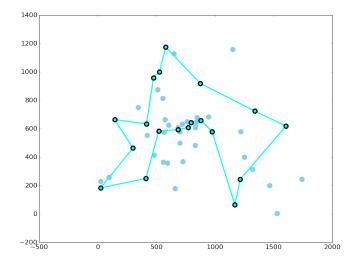


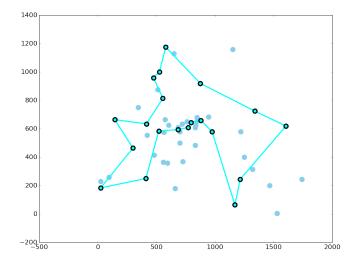


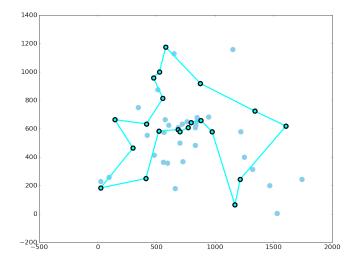


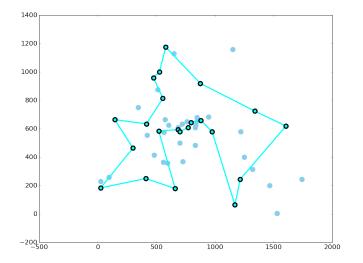


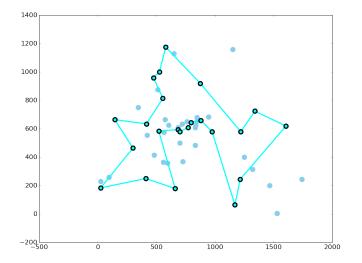


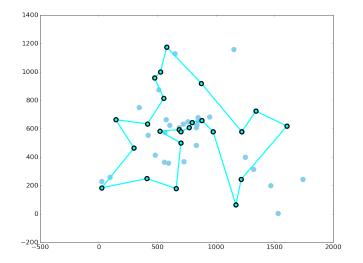


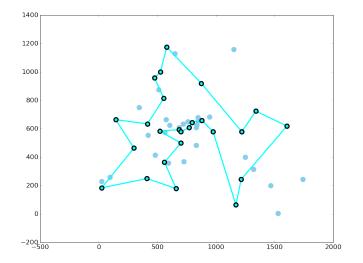


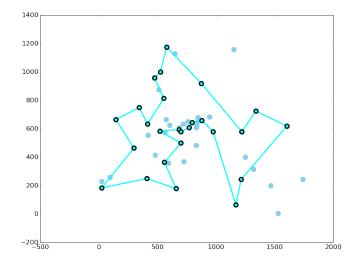


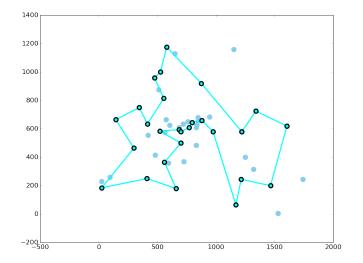


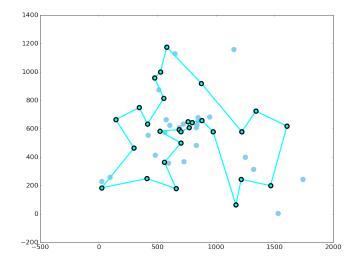


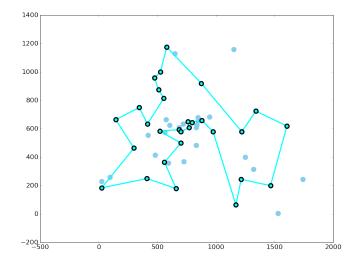


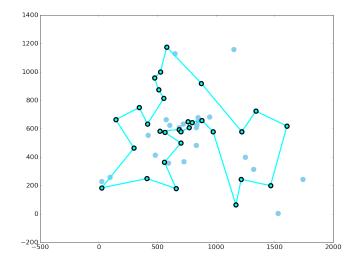


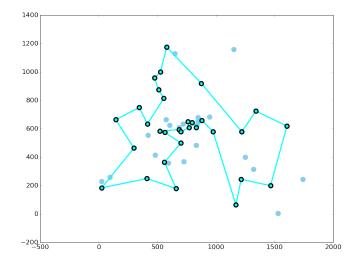


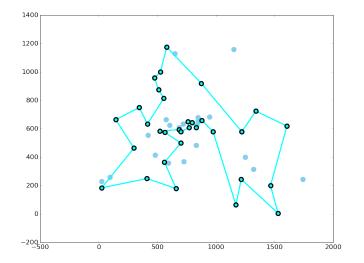


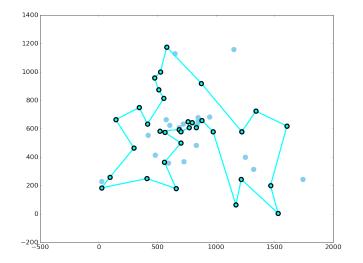


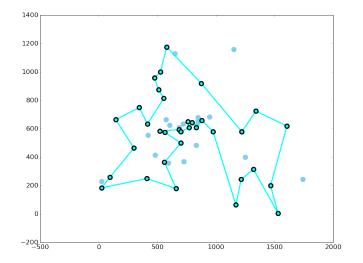


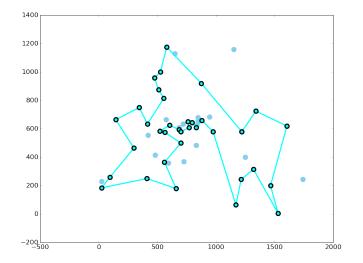


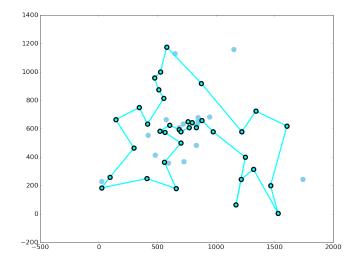


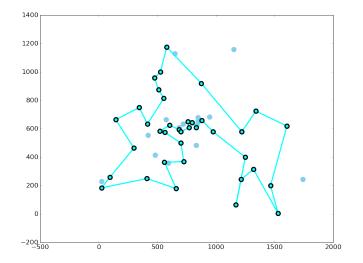


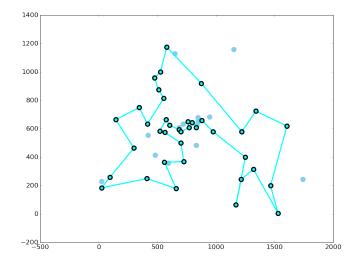


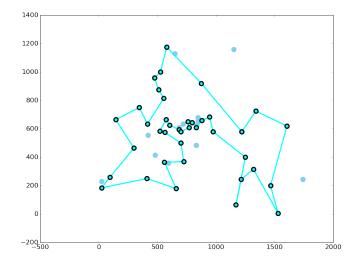


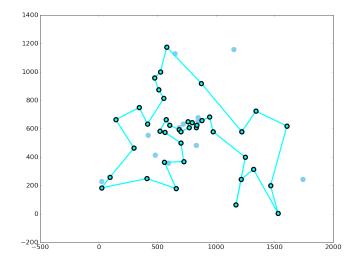


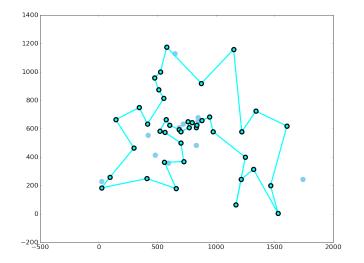






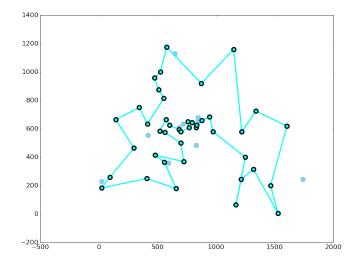


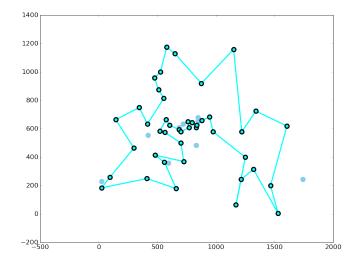


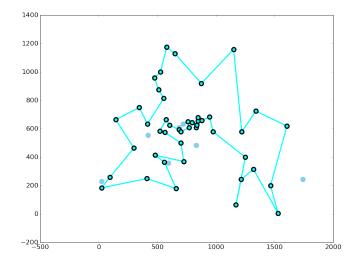


Universida_{de}Vigo

122 / 239

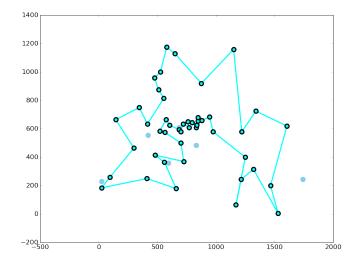






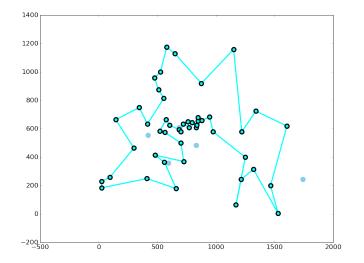
Universida_{de}Vigo

125 / 239



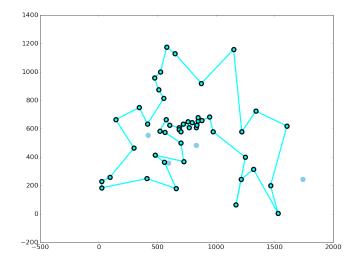
Universida_{de}Vigo

126 / 239



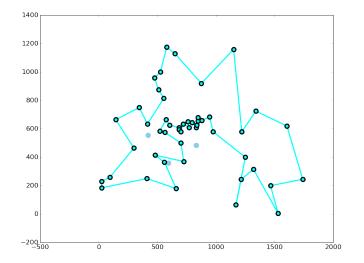
Universida_{de}Vigo

127 / 239



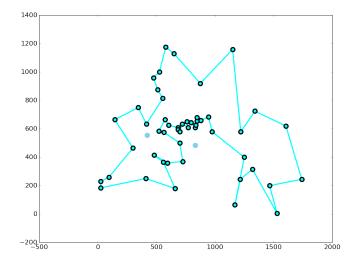
Universida_{de}Vigo

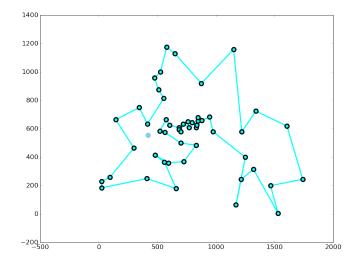
128 / 239



Universida_{de}Vigo

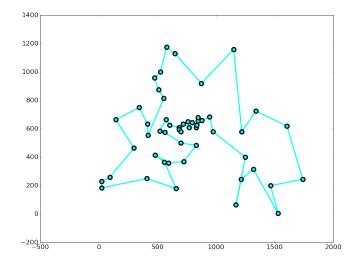
129 / 239





Universida_{de}Vigo

131 / 239



Universida_{de}Vigo

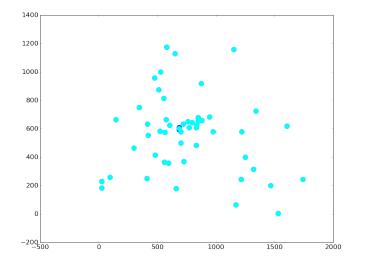
132 / 239

The pair-center tour algorithm is a contribution of my own for this course (still haven't found it on the internet). It is a deterministic algorithm:

- with a bottom-up construction build a binary tree by replacing the/a closest pair of points by their center
- with a top-down construction build the tour by inserting the corresponding pairs in the best possible way

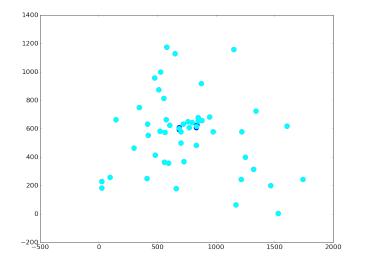
The runtime is in $\mathcal{O}(n^2)$, I guess (implemented is $\mathcal{O}(n^3)$ and a $\mathcal{O}(n^2)$ version with more sophisticated data structures).

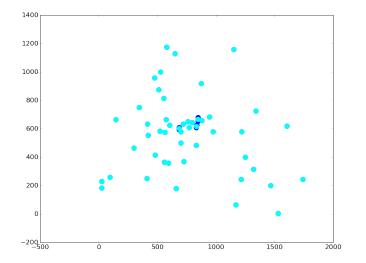
Can you prove a worst case bound for the tour length? Recently I've improved to $\mathcal{O}(n \operatorname{polylog}(n))$ with practical runtime in the order of $n \log n$ and error below 5%.

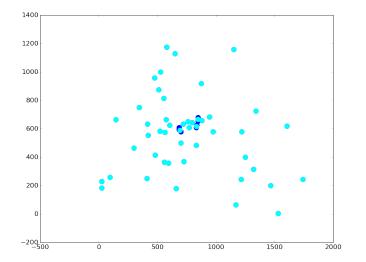


Universida_{de}Vigo

134 / 239

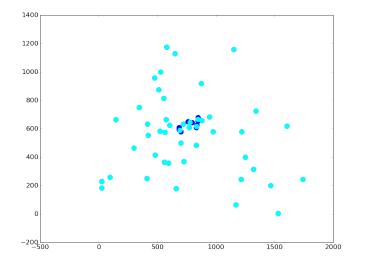


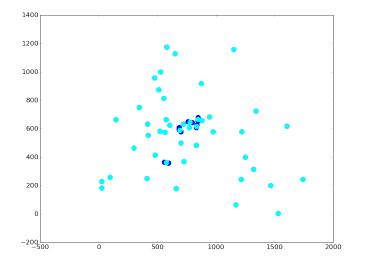




Universida_{de}Vigo

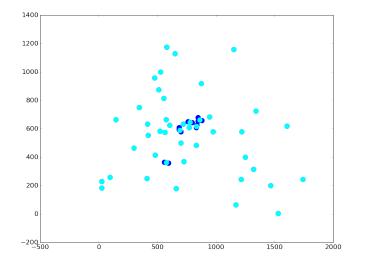
137 / 239

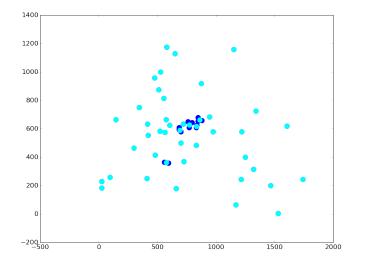


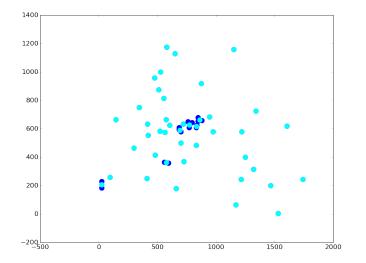


Universida_{de}Vigo

139 / 239

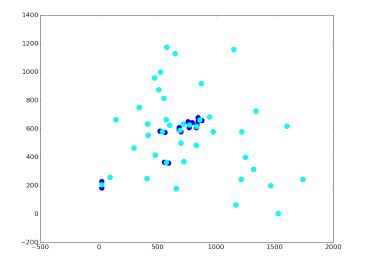


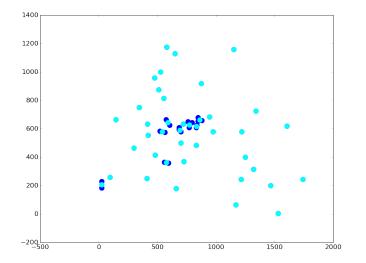


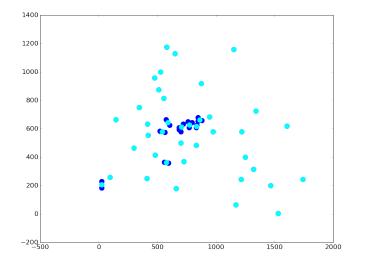


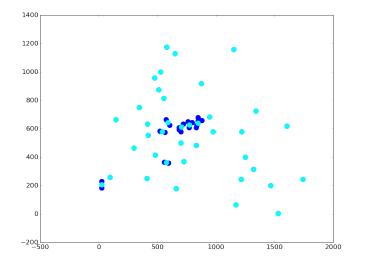
Universida_{de}Vigo

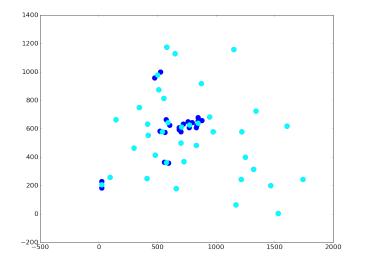
142 / 239

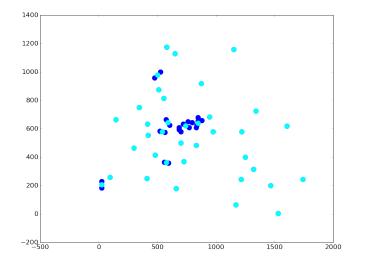


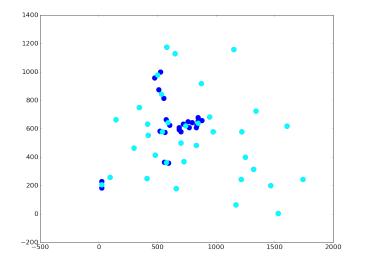


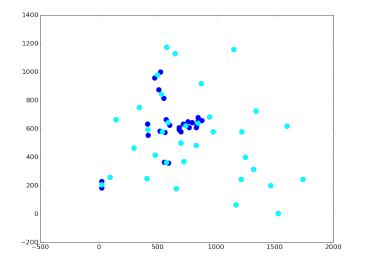


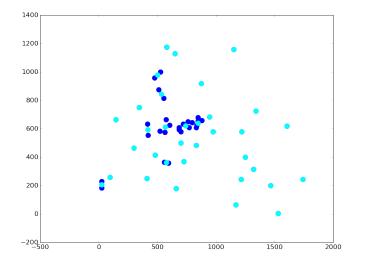






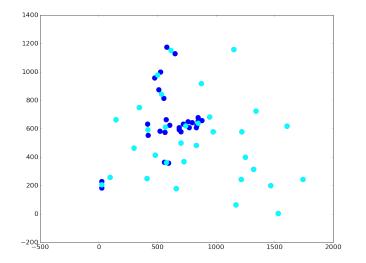






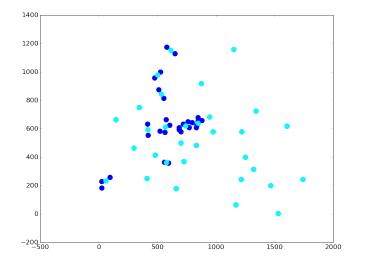
Universida_{de}Vigo

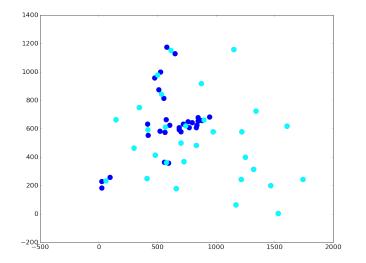
151 / 239



Universida_{de}Vigo

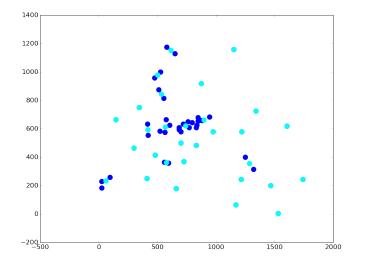
152 / 239

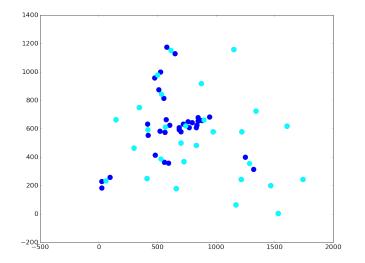


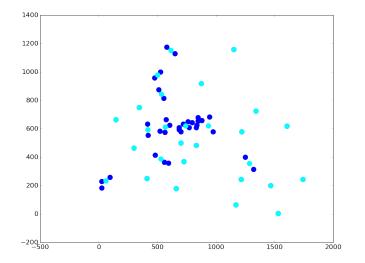


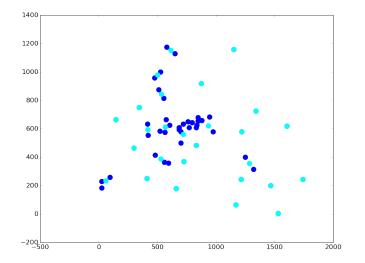
Universida_{de}Vigo

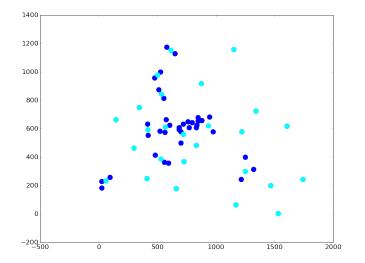
154 / 239

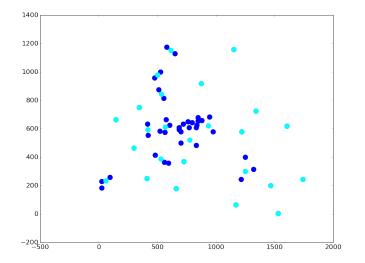


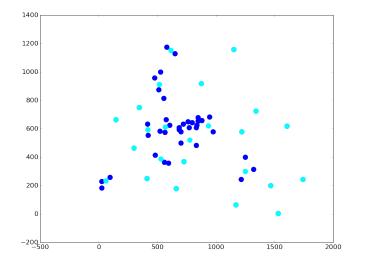




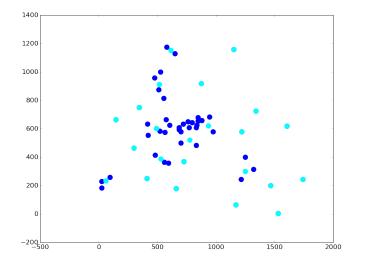






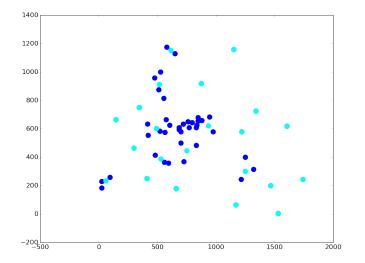


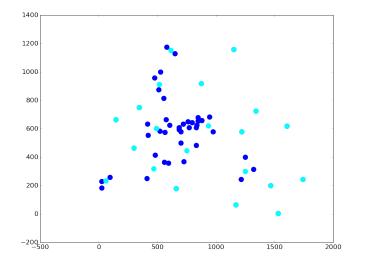
UniversidadeWigo



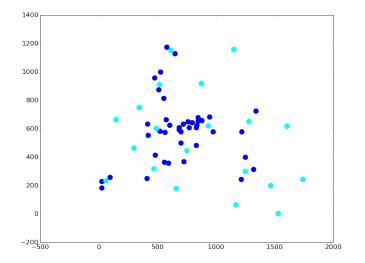
Universida_{de}Vigo

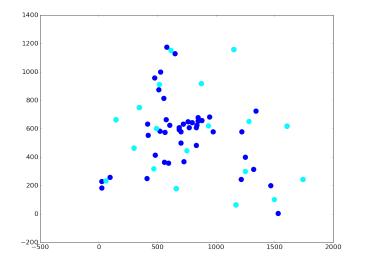
EC

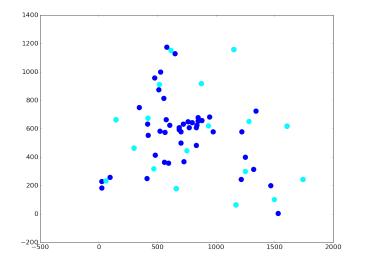




UniversidadeVigo

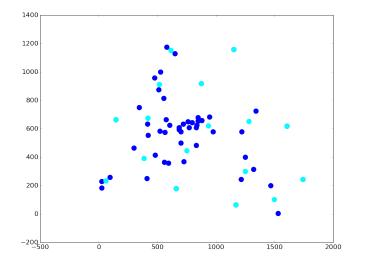


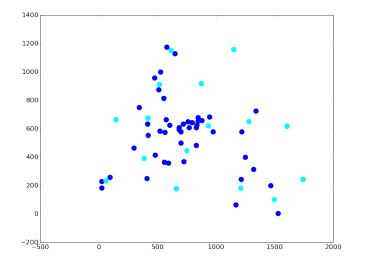


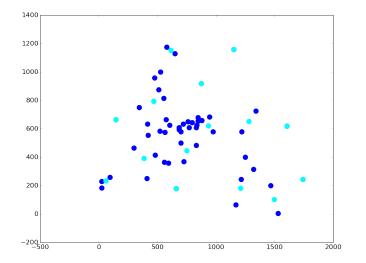


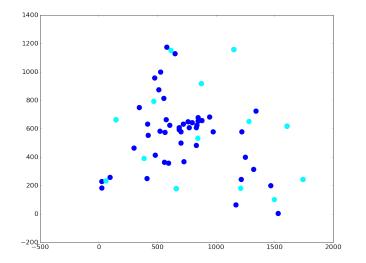
Universida_{de}Vigo

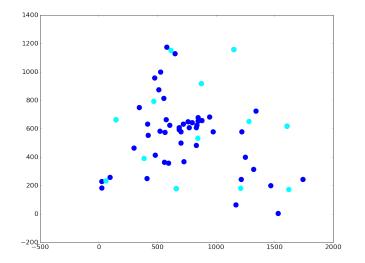
167 / 239





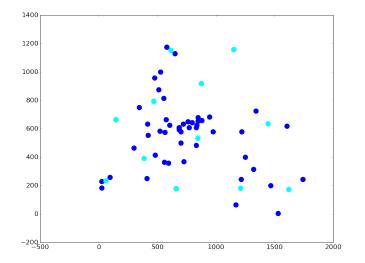






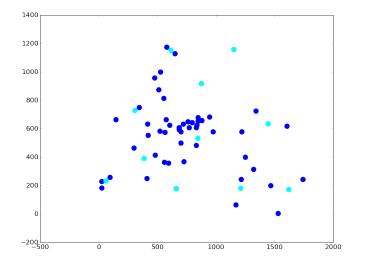
Universida_{de}Vigo

172 / 239



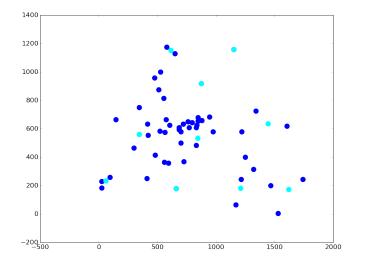
Universida_{de}Vigo

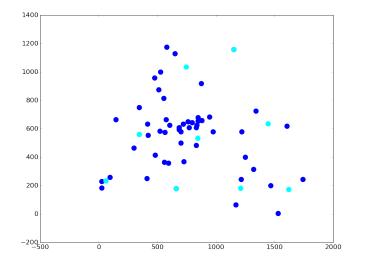
173 / 239

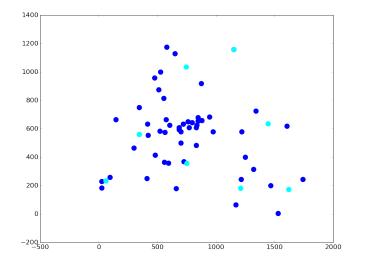


Universida_{de}Vigo

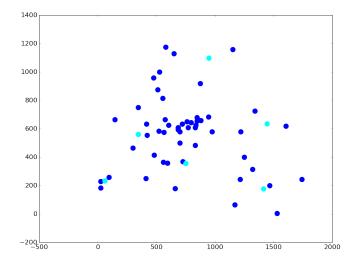
174 / 239

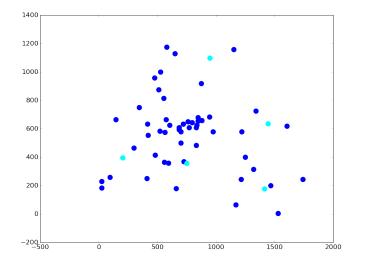


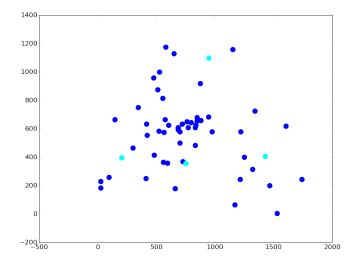


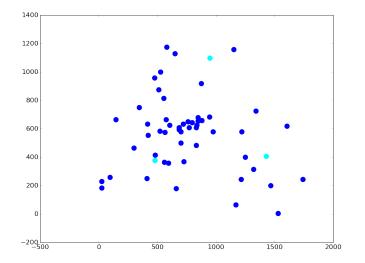


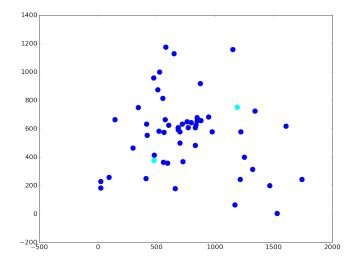


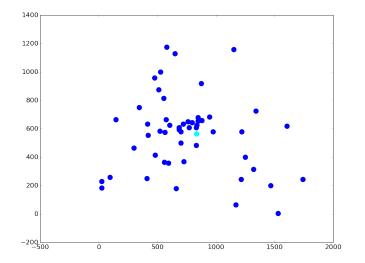


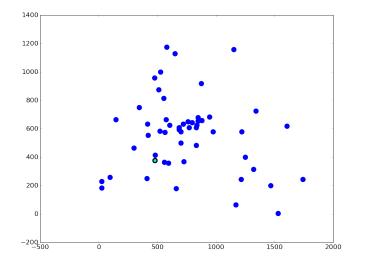


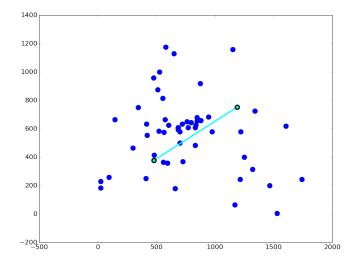


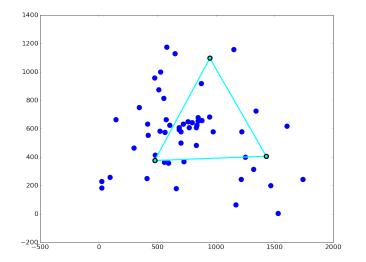


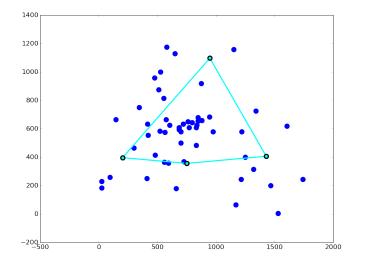


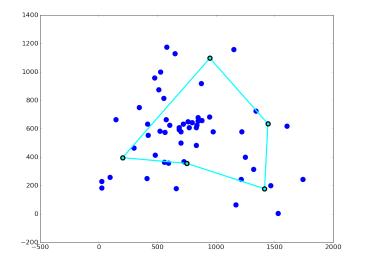


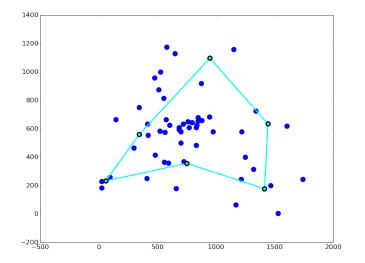


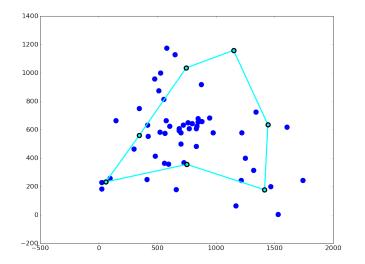


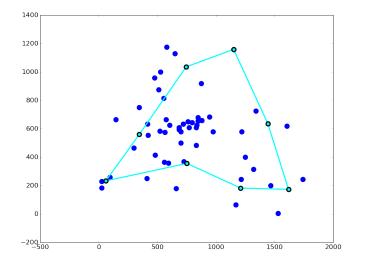


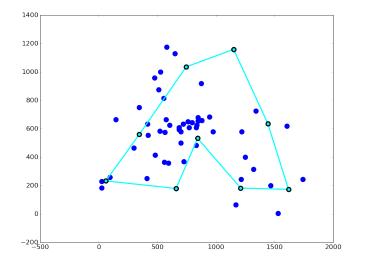


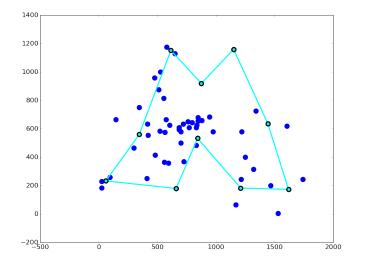


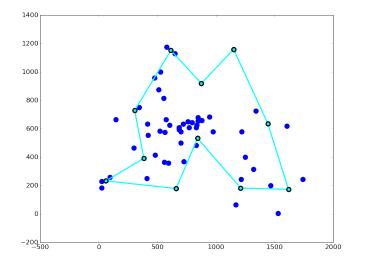


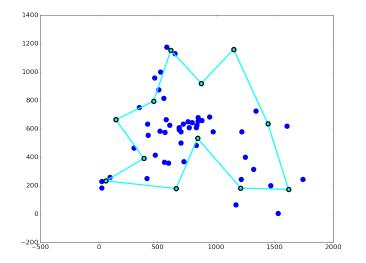


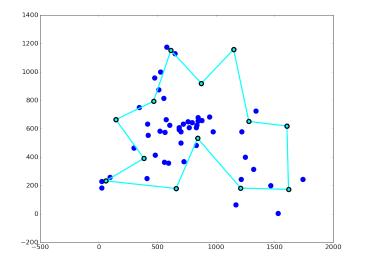




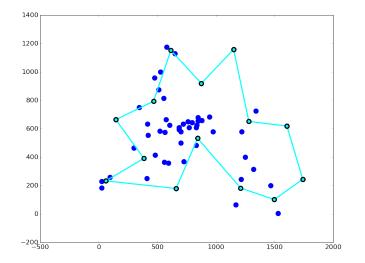


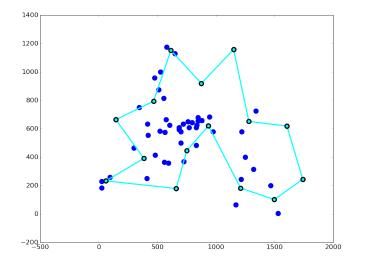


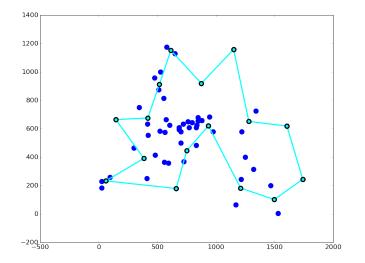


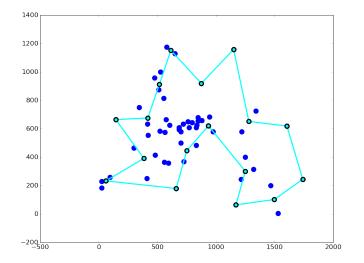


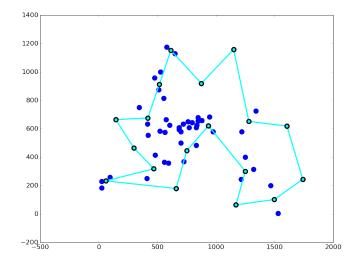
Universida_{de}Vigo

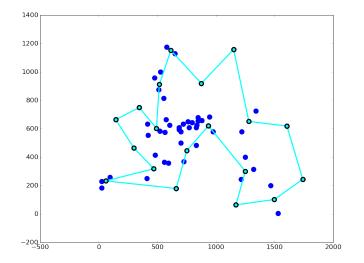


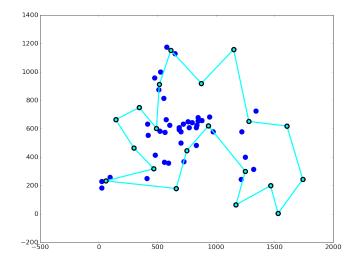


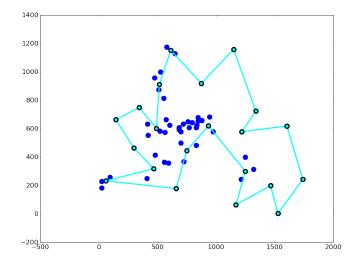


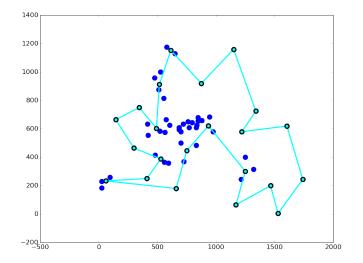


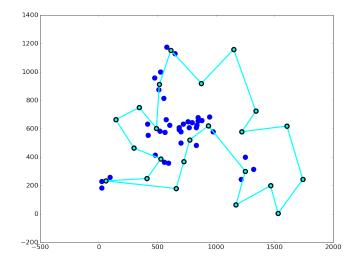


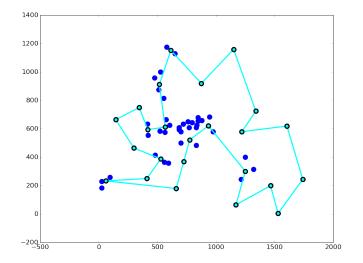


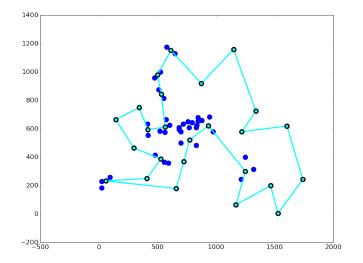


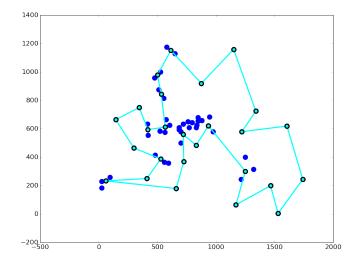


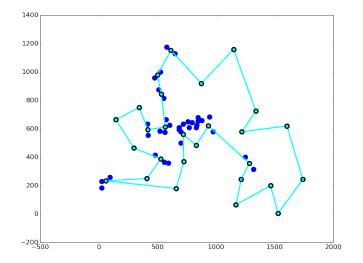


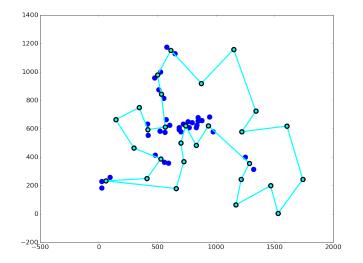


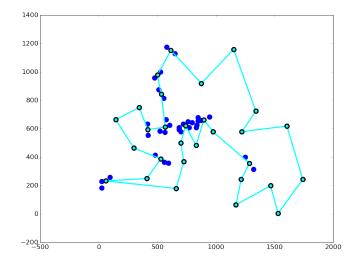


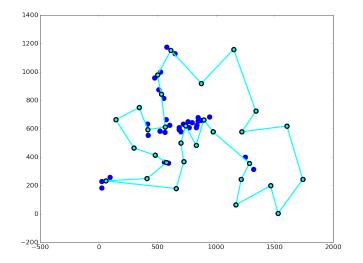


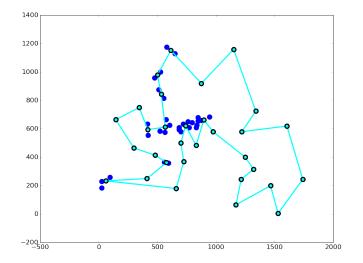


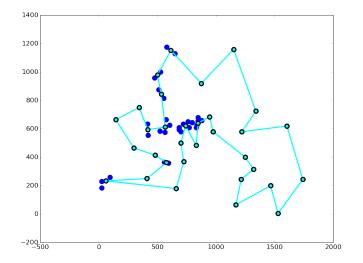


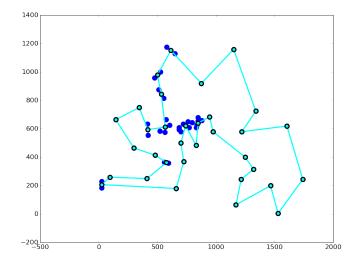


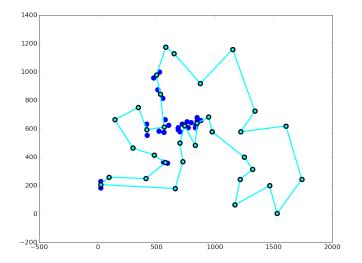


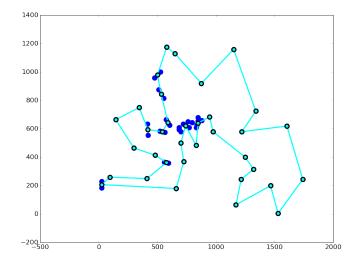


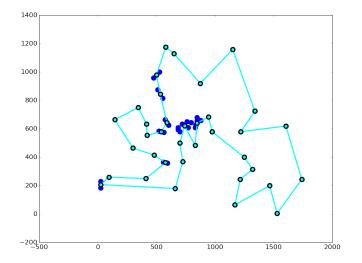


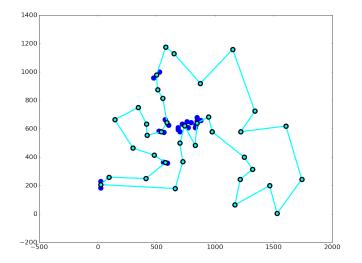


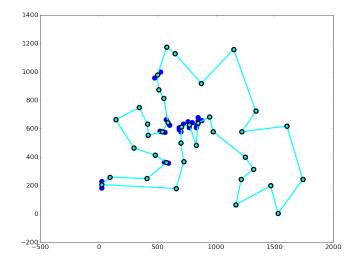


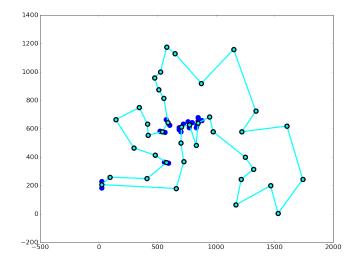


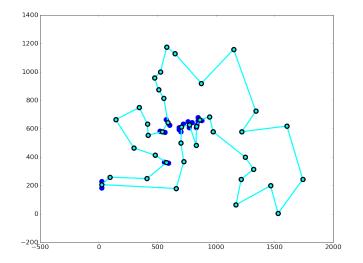


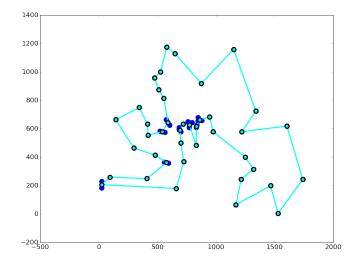


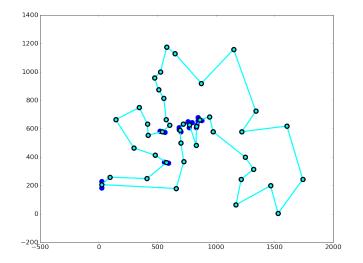


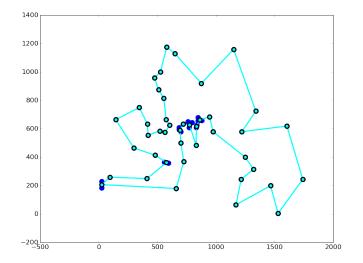


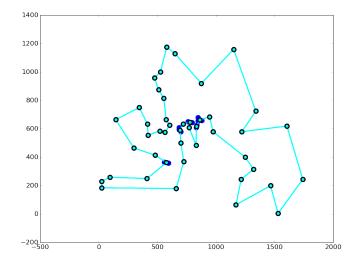


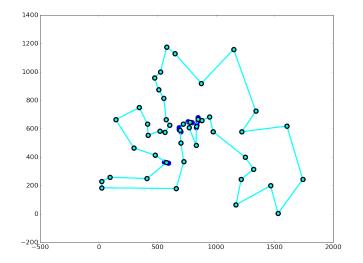


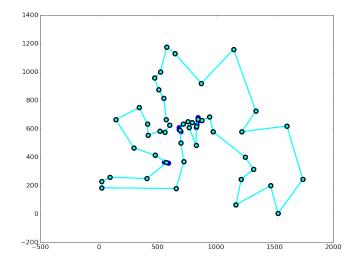


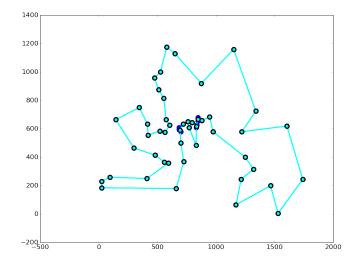


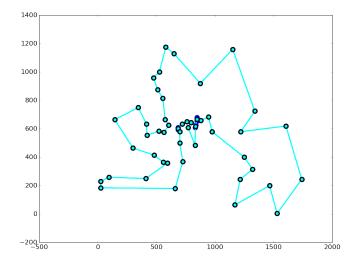


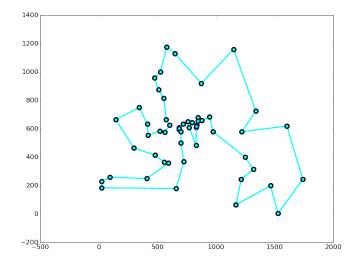


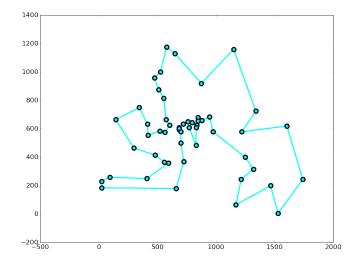


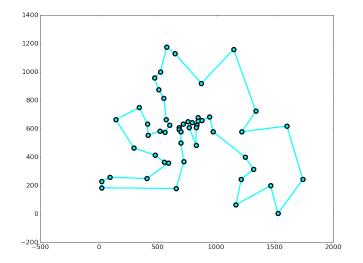












length of tour

	closest-neighbor tour (can be large, 1974)
$2 \cdot L_{opt} \cdot \cdots \bullet$	minimum spanning tree algorithm (or quick tour) Christofides algorithm (best known, 1976) playground for good heuristic algorithms
1.5 · <i>L_{opt}</i> · · · · · •	Christofides algorithm (best known, 1976)
L _{play} ·····•	playground for good heuristic algorithms
$L_{opt} \cdots \bullet$	optimal tour length, Bellman-Held-Karp algorithm (1962)
L _{нкв} •	Held-Karp bound (($L_{opt}-L_{HKB})/L_{opt}pprox$ 0.01, 1971)
L _{MDB}	minimal distance bound (possible $L_{MDB} = L_{opt}$)
0 · · · · •	absolute minimum

How does the genetic algorithm work?

A genetic algorithm is a bio-inspired probabilistic algorithm:

- initialize a set of individuals
- while stopping criterium not met
 - evaluate fitness of the individuals (in search space)
 - generate off-springs (mutation and crossover, in the encoding space)
 - generate a new generation, i.e., a subset of parents plus off-springs (selection)
- report best individual generated in the process

You'll work with this approach in the lab hours.

additional information and benchmark instances can be found at:

- http://comopt.ifi.uni-heidelberg.de/software/ TSPLIB95/ Or
- https:

//www.math.uwaterloo.ca/tsp/data/index.html

 almost a counterexample of how to implement GA for TSP https: //jaketae.github.io/study/genetic-algorithm/

• we use the work at https://github.com/guofei9987/scikit-opt

- Monte Carlo algorithms, and hence, evolutionary algorithms are often quite easy to parallelize.
- We will not talk about parallelization in this course, however, it's an important issue in order to achieve good performance on modern systems.