
Evolutionary Computation
2023/24

Master Artificial Intelligence

Arno Formella

Departamento de Informática
Escola Superior de Enxeñaría Informática

Universidade de Vigo

23/24

EC Arno Formella 1 / 35

evaluation/assessment

active participation in class (10%)

two major up-loads of homework (50%)
(probably week 19-23 Feb, and week 11-15 Mar)

final exam (40%)
(28th May and/or 2th Jul)

EC Arno Formella 2 / 35

bibliography

D. Simon, Evolutionary Optimization Algorithms, ISBN:
978-0-470-93741-9, Wiley, 2013

A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing,
second edition, ISBN 978-3-662-44873-1, Springer, 2015

my webpage:
http://formella.webs.uvigo.es/doc/ec23/index.html

EC Arno Formella 3 / 35

http://formella.webs.uvigo.es/doc/ec23/index.html

evolutionary computation

Evolutionary computation is about optimization.

Evolutionary algorithms are usually randomized or probabilistic
heuristic algorithms.

Many of them are called nature-inspired (or bio-inspired)
algorithms as they exhibit some properties observed in nature
(especially, but not only, from biology).

Programs based on evolutionary algorithms are typically used to
find approximate solutions to difficult problems.

Disclaimer: we are talking about nature-inspired optimization
algorithms, we are not copying nature, mostly, because I’ve no idea
what nature is doing. We are interested in mathematical models and
certain types of algorithms that serve as powerful optimization
methods.

EC Arno Formella 4 / 35

samples of recent publications in the field

EC Arno Formella 5 / 35

samples of recent publications in the field

EC Arno Formella 6 / 35

samples of recent publications in the field

EC Arno Formella 7 / 35

samples of recent publications in the field

EC Arno Formella 8 / 35

samples of recent publications in the field

EC Arno Formella 9 / 35

samples of recent publications in the field

EC Arno Formella 10 / 35

samples of recent publications in the field

EC Arno Formella 11 / 35

the problems we will look at

search of minimum in real-valued multi-dimensional functions

traveling salesman (or nowadays salesperson) problem (TSP)

sorting as an optimization problem (just for fun)

maybe: (0-1)-knapsack problem (KSP)

some more problems as examples

EC Arno Formella 12 / 35

algorithms

An algorithm is a finite sequence of well-defined steps (or
instructions) to complete a task or solve a problem.

In principal, the individual steps must be executable by a human
being.

The steps (or instructions) must realize a finite change of state (or
configuration) on the system on which the algorithm is executed.

Completing a task means that there is an other algorithm that can
decide that the final configuration has the required property.

The time complexity of an algorithm is the number of steps the
algorithm executes before it stops.

EC Arno Formella 13 / 35

computational complexity

Algorithms can be grouped into classes according to their time
complexity (same is true for space complexity).

For an asymptotic upper bound according to some input size n
we say:
function f is in the order of function g, whenever we have:

∃c > 0 ∃n0 ∀n > n0 : |f (n)| ≤ c ·g(n)

and write: f (n) = O(g(n)).

Example: if f (n) = O(n3) then f does not grow faster than cubic.

There are more notations for other asymptotic characterizations:
o, ω , Ω, Θ.

If you like, take a look at the complexity zoo:
https://complexityzoo.net/Complexity_Zoo

EC Arno Formella 14 / 35

https://complexityzoo.net/Complexity_Zoo

computational complexity

There are arbitrary difficult problems
(there is a hierarchy of classes).

There are problems that don’t have a solution at all
(uncomputable problems)
examples are: decide whether an arbitrary program stops, decide
whether two formal languages are equivalent, among others.

There are problems where we know that they are computable
(i.e., there exists a solution) but we don’t know how to compute
one. Look into forbidden graph minors in graph theory.

There are problems for which there are known algorithms, but we
don’t know the smallest class they belong to, e.g., unknotting an
unknot (take a look into knot theory)
https://en.wikipedia.org/wiki/Unknot or
factorization of numbers https://en.wikipedia.org/
wiki/Integer_factorization.

EC Arno Formella 15 / 35

https://en.wikipedia.org/wiki/Unknot
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Integer_factorization

runtime examples according to complexity

Assume we can deal with 1 million items in 1 second using a linear
time algorithm (i.e., megahertz item processing):

size n function O-notation time
1000000 linear time O(n) 1 second

quasi-linear time O(n logn) 20 seconds
quadratic time O(n2) 11.6 days
cubic time O(n3) 31710 years
quartic time O(n4) 32 billion year

(2.3 times age of universe)
exponential time O(2n) eternal
factorial time O(n!) no words any more

EC Arno Formella 16 / 35

runtime examples according to complexity

Assume we can deal with 1 million items in 1 millisecond using a linear
time algorithm (i.e., gigahertz item processing):

size n function O-notation time
1000000 linear time O(n) 1 millisecond

quasi-linear time O(n logn) 20 milliseconds
quadratic time O(n2) 16 minutes
cubic time O(n3) 31.7 years
quartic time O(n4) 32 million years
exponential time O(2n) eternal
factorial time O(n!) no words any more

Note: Parallelization on a p-processor machine gives you at most a
linear speedup of p (and most of the time not even that). Quantum
computation offers sometimes (Grover algorithm) a quadratic speedup
regarding input size n.

EC Arno Formella 17 / 35

handable problem sizes according to complexity

Assume 1 nanosecond processing time per item (i.e., 1 GHz operating
frequency), problem sizes handable in one hour:

function O-notation problem size
linear time O(n) 3.6 trillion
quasi-linear time O(n logn) 96.6 billion
quadratic time O(n2) 1.9 million
cubic time O(n3) 15.3 thousand
quartic time O(n4) 1377
exponential time O(2n) 41
factorial time O(n!) 15

EC Arno Formella 18 / 35

algorithm types

deterministic algorithms

non-deterministic algorithms

randomized or probabilistic algorithms

quantum algorithms

Note, all types compute the same set of computable functions, they
differ only in time and space complexity (see below).

EC Arno Formella 19 / 35

When do we consider a problem to be difficult?

A problem is difficult whenever we only know deterministic algorithms
solving the problem that have at least exponential runtime (or
polynomial runtime with a large exponent).

EC Arno Formella 20 / 35

Side note: NP-complete and NP-hard problems

Evolutionary algorithms are often mentioned as a way to tackle
NP-complete or NP-hard problems: What does that mean?

A problem is NP-complete when we know a polynomial time
deterministic algorithm that checks a solution, but we know only
an exponential time deterministic algorithm to find a solution.
A problem is, at least, NP-hard when we even don’t know a
polynomial time deterministic algorithm that checks a solution.
There are problems where we know that they can be solved in
exponential time, but we don’t know whether they are
NP-complete (or even simpler), e.g., the graph isomorphism
problem, or the unknot problem.
Essentially, we don’t know whether the NP-complete problems
(those that we know to have a polynomial time algorithm to check
them) are the same class as the polynomial time solvable
problems.
In other words, we don’t know whether P = NP or P ̸= NP.

EC Arno Formella 21 / 35

randomized or probabilistic algorithms

two main classes:

Monte Carlo algorithm:
for a certain number of iterations do:

perform some randomized algorithm step towards a better solution
(usually keep track of your best solution found so far)

Monte Carlo algorithms always terminate and (hopefully) find a
somewhat good solution.

Las Vegas algorithm:
while a certain end condition still not met do:

perform some randomized algorithm step towards a better solution

Las Vegas algorithms only terminate with a correct solution (or do
not terminate at all), but their runtime is probabilistic.

EC Arno Formella 22 / 35

algorithmic paradigms

backtracking

branch and bound

brute-force (or exhaustive) search

divide and conquer

dynamic programming

greedy algorithm

prune and search

online algorithms

EC Arno Formella 23 / 35

heuristic algorithms

What are heuristic algorithms?

Just do something you come up with and be happy with the result.

EC Arno Formella 24 / 35

evolutionary algorithms

What are evolutionary algorithms?

Evolutionary algorithms are heuristic optimization algorithms
usually implemented with the Monte Carlo approach (and
possibly a Las Vegas stopping condition when available)

that exhibit, let’s say, at least a tendency to approach a global
minimum as solution of the optimization problem.

(Often they are inspired by some phenomenon observable in
nature or a creative name has been used.)

EC Arno Formella 25 / 35

optimization

Given a search space X (called as well search domain or
problem space) and

a function f (bounded from below) from the search space to the
real numbers (or at least a totally ordered set), e.g. f : X−→ R,

find an element x⋆ ∈ X such that f (x⋆)≤ f (x) for all x ∈ X.

i.e., we look for a global minimum.

Observe: whenever we look for a maximum, we can use just a
negative sign and look for a minimum (and f must be bounded from
above)!

EC Arno Formella 26 / 35

local versus global minimum

If we can determine a neighborhood around each element x ∈ X,
we call N (x) the set of neighbors of x .

and if we have for all such neighbors x ′ ∈ N (x), that
f (x)≤ f (x ′),

then we call x a local minimum (sometimes written as x̂).

Reaching a local minimum is often somewhat easier, as we can
take advantage of a possibly available gradient (local search
algorithms).

It happens to be an issue in optimization not to get stuck in a local
minimum while searching for a global minimum.

EC Arno Formella 27 / 35

optimization test functions: Sphere function

f (x) =
d

∑
i=1

x2
i

EC Arno Formella 28 / 35

optimization test functions: Ackley function

f (x) =−aexp

(
−b

√
1
d

d

∑
i=1

x2
i

)
− exp

(
1
d

d

∑
i=1

cos(cxi)

)
+a+e

EC Arno Formella 29 / 35

optimization test functions: Schaffer 4 function

f (x) = 0.5+
cos2(sin(|x2

1 − x2
2 |))−0.5

[1+0.001(X 2
1 + x2

2)]
2

EC Arno Formella 30 / 35

optimization test functions: Rosenbrock function

f (x) = ∑
i=1

d −1[100 · (xi+1 − x2
i)

2 +(xi −1)2]

EC Arno Formella 31 / 35

optimization test functions

For more real-valued functions and common

parameter settings,

search areas,

local/global optima,

and code examples

take a look at
https://www.sfu.ca/~ssurjano/optimization.html
or look for CEC2017 benchmark https://www.kaggle.com/
code/kooaslansefat/cec-2017-benchmark

EC Arno Formella 32 / 35

https://www.sfu.ca/~ssurjano/optimization.html
https://www.kaggle.com/code/kooaslansefat/cec-2017-benchmark
https://www.kaggle.com/code/kooaslansefat/cec-2017-benchmark

the traveling salesperson problem (TSP)

The basic traveling salesperson problems are:

Given n locations or cities and their interconnections in the 2D
plane, tell whether there is a closed tour through all cities that
visits each city exactly once and has a length below a certain
threshold.
This is an NP-complete decision problem.

Given n cities in the 2D plane, find a shortest closed tour through
all cities that visits each city exactly once.
This is an NP-hard search problem.

Given n cities in the 2D plane, find all shortest closed tours
through all cities that visit each city exactly once.
This is an exponential time solver problem.

Note, there are n! possible tours through the n cities.

TSP is one of the best studied problems in computer science.

There are more varieties of TSPs (some details later).

EC Arno Formella 33 / 35

traveling salesperson problem: first impressions

the cities distributed geographically (dataset berlin52)

EC Arno Formella 34 / 35

traveling salesperson problem: first impressions

the best tour (known for this example): 0% relative error

EC Arno Formella 35 / 35

