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evaluation/assessment

active participation in class (10%)

two major up-loads of homework (50%)
(probably week 19-23 Feb, and week 11-15 Mar)

final exam (40%)
(28th May and/or 2th Jul)
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evolutionary computation

Evolutionary computation is about optimization.

Evolutionary algorithms are usually randomized or probabilistic
heuristic algorithms.

Many of them are called nature-inspired (or bio-inspired)
algorithms as they exhibit some properties observed in nature
(especially, but not only, from biology).

Programs based on evolutionary algorithms are typically used to
find approximate solutions to difficult problems.

Disclaimer: we are talking about nature-inspired optimization
algorithms, we are not copying nature, mostly, because I’ve no idea
what nature is doing. We are interested in mathematical models and
certain types of algorithms that serve as powerful optimization
methods.
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the problems we will look at

search of minimum in real-valued multi-dimensional functions

traveling salesman (or nowadays salesperson) problem (TSP)

sorting as an optimization problem (just for fun)

maybe: (0-1)-knapsack problem (KSP)

some more problems as examples
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algorithms

An algorithm is a finite sequence of well-defined steps (or
instructions) to complete a task or solve a problem.

In principal, the individual steps must be executable by a human
being.

The steps (or instructions) must realize a finite change of state (or
configuration) on the system on which the algorithm is executed.

Completing a task means that there is an other algorithm that can
decide that the final configuration has the required property.

The time complexity of an algorithm is the number of steps the
algorithm executes before it stops.
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computational complexity

Algorithms can be grouped into classes according to their time
complexity (same is true for space complexity).

For an asymptotic upper bound according to some input size n
we say:
function f is in the order of function g, whenever we have:

∃c > 0 ∃n0 ∀n > n0 : |f (n)| ≤ c ·g(n)

and write: f (n) = O(g(n)).

Example: if f (n) = O(n3) then f does not grow faster than cubic.

There are more notations for other asymptotic characterizations:
o, ω , Ω, Θ.

If you like, take a look at the complexity zoo:
https://complexityzoo.net/Complexity_Zoo

EC Arno Formella 14 / 389

https://complexityzoo.net/Complexity_Zoo


computational complexity

There are arbitrary difficult problems
(there is a hierarchy of classes).

There are problems that don’t have a solution at all
(uncomputable problems)
examples are: decide whether an arbitrary program stops, decide
whether two formal languages are equivalent, among others.

There are problems where we know that they are computable
(i.e., there exists a solution) but we don’t know how to compute
one. Look into forbidden graph minors in graph theory.

There are problems for which there are known algorithms, but we
don’t know the smallest class they belong to, e.g., unknotting an
unknot (take a look into knot theory)
https://en.wikipedia.org/wiki/Unknot or
factorization of numbers https://en.wikipedia.org/
wiki/Integer_factorization.
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runtime examples according to complexity

Assume we can deal with 1 million items in 1 second using a linear
time algorithm (i.e., megahertz item processing):

size n function O-notation time
1000000 linear time O(n) 1 second

quasi-linear time O(n logn) 20 seconds
quadratic time O(n2) 11.6 days
cubic time O(n3) 31710 years
quartic time O(n4) 32 billion year

(2.3 times age of universe)
exponential time O(2n) eternal
factorial time O(n!) no words any more
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runtime examples according to complexity

Assume we can deal with 1 million items in 1 millisecond using a linear
time algorithm (i.e., gigahertz item processing):

size n function O-notation time
1000000 linear time O(n) 1 millisecond

quasi-linear time O(n logn) 20 milliseconds
quadratic time O(n2) 16 minutes
cubic time O(n3) 31.7 years
quartic time O(n4) 32 million years
exponential time O(2n) eternal
factorial time O(n!) no words any more

Note: Parallelization on a p-processor machine gives you at most a
linear speedup of p (and most of the time not even that). Quantum
computation offers sometimes (Grover algorithm) a quadratic speedup
regarding input size n.
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handable problem sizes according to complexity

Assume 1 nanosecond processing time per item (i.e., 1 GHz operating
frequency), problem sizes handable in one hour:

function O-notation problem size
linear time O(n) 3.6 trillion
quasi-linear time O(n logn) 96.6 billion
quadratic time O(n2) 1.9 million
cubic time O(n3) 15.3 thousand
quartic time O(n4) 1377
exponential time O(2n) 41
factorial time O(n!) 15
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algorithm types

deterministic algorithms

non-deterministic algorithms

randomized or probabilistic algorithms

quantum algorithms

Note, all types compute the same set of computable functions, they
differ only in time and space complexity (see below).
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When do we consider a problem to be difficult?

A problem is difficult whenever we only know deterministic algorithms
solving the problem that have at least exponential runtime (or
polynomial runtime with a large exponent).
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Side note: NP-complete and NP-hard problems

Evolutionary algorithms are often mentioned as a way to tackle
NP-complete or NP-hard problems: What does that mean?

A problem is NP-complete when we know a polynomial time
deterministic algorithm that checks a solution, but we know only
an exponential time deterministic algorithm to find a solution.
A problem is, at least, NP-hard when we even don’t know a
polynomial time deterministic algorithm that checks a solution.
There are problems where we know that they can be solved in
exponential time, but we don’t know whether they are
NP-complete (or even simpler), e.g., the graph isomorphism
problem, or the unknot problem.
Essentially, we don’t know whether the NP-complete problems
(those that we know to have a polynomial time algorithm to check
them) are the same class as the polynomial time solvable
problems.
In other words, we don’t know whether P = NP or P ̸= NP.
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randomized or probabilistic algorithms

two main classes:

Monte Carlo algorithm:
for a certain number of iterations do:

perform some randomized algorithm step towards a better solution
(usually keep track of your best solution found so far)

Monte Carlo algorithms always terminate and (hopefully) find a
somewhat good solution.

Las Vegas algorithm:
while a certain end condition still not met do:

perform some randomized algorithm step towards a better solution

Las Vegas algorithms only terminate with a correct solution (or do
not terminate at all), but their runtime is probabilistic.
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algorithmic paradigms

backtracking

branch and bound

brute-force (or exhaustive) search

divide and conquer

dynamic programming

greedy algorithm

prune and search

online algorithms
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heuristic algorithms

What are heuristic algorithms?

Just do something you come up with and be happy with the result.
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evolutionary algorithms

What are evolutionary algorithms?

Evolutionary algorithms are heuristic optimization algorithms
usually implemented with the Monte Carlo approach (and
possibly a Las Vegas stopping condition when available)

that exhibit, let’s say, at least a tendency to approach a global
minimum as solution of the optimization problem.

(Often they are inspired by some phenomenon observable in
nature or a creative name has been used.)
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optimization

Given a search space X (called as well search domain or
problem space) and

a function f (bounded from below) from the search space to the
real numbers (or at least a totally ordered set), e.g. f : X−→ R,

find an element x⋆ ∈ X such that f (x⋆)≤ f (x) for all x ∈ X.

i.e., we look for a global minimum.

Observe: whenever we look for a maximum, we can use just a
negative sign and look for a minimum (and f must be bounded from
above)!
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local versus global minimum

If we can determine a neighborhood around each element x ∈ X,
we call N (x) the set of neighbors of x .

and if we have for all such neighbors x ′ ∈ N (x), that
f (x)≤ f (x ′),

then we call x a local minimum (sometimes written as x̂).

Reaching a local minimum is often somewhat easier, as we can
take advantage of a possibly available gradient (local search
algorithms).

It happens to be an issue in optimization not to get stuck in a local
minimum while searching for a global minimum.
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optimization test functions: Sphere function

f (x) =
d

∑
i=1

x2
i
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optimization test functions: Ackley function

f (x) =−aexp

(
−b

√
1
d

d

∑
i=1

x2
i

)
− exp

(
1
d

d

∑
i=1

cos(cxi)

)
+a+e
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optimization test functions: Schaffer 4 function

f (x) = 0.5+
cos2(sin(|x2

1 − x2
2 |))−0.5

[1+0.001(X 2
1 + x2

2 )]
2
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optimization test functions: Rosenbrock function

f (x) = ∑
i=1

d −1[100 · (xi+1 − x2
i )

2 +(xi −1)2]
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optimization test functions

For more real-valued functions and common

parameter settings,

search areas,

local/global optima,

and code examples

take a look at
https://www.sfu.ca/~ssurjano/optimization.html
or look for CEC2017 benchmark https://www.kaggle.com/
code/kooaslansefat/cec-2017-benchmark
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the traveling salesperson problem (TSP)

The basic traveling salesperson problems are:

Given n locations or cities and their interconnections in the 2D
plane, tell whether there is a closed tour through all cities that
visits each city exactly once and has a length below a certain
threshold.
This is an NP-complete decision problem.

Given n cities in the 2D plane, find a shortest closed tour through
all cities that visits each city exactly once.
This is an NP-hard search problem.

Given n cities in the 2D plane, find all shortest closed tours
through all cities that visit each city exactly once.
This is an exponential time solver problem.

Note, there are n! possible tours through the n cities.

TSP is one of the best studied problems in computer science.

There are more varieties of TSPs (some details later).
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traveling salesperson problem: first impressions

the cities distributed geographically (dataset berlin52)

EC Arno Formella 34 / 389



traveling salesperson problem: first impressions

the best tour (known for this example): 0% relative error
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traveling salesperson problem: first impressions

a closest-neighbor tour: 8.49% relative error
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traveling salesperson problem: first impressions

a pair-center tour: 7.28% relative error
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traveling salesperson problem: first impressions

the best tour (known for this example): 0% relative error
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traveling salesperson problem: first impressions

a quick tour (with Monte Carlo): 2.32% relative error
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traveling salesperson problem: first impressions

a genetic algorithm tour: 8.37% relative error
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traveling salesperson problem: first impressions

the best tour (known for this example): 0% relative error
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lower bounds on tour length of TSP

simple bound: sum of minimal distances to neighbors

Held-Karp bound
(typically comes close to 1% on random instances and below 2%
on TSPLIB, arguments for the bound are quite complicated)
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upper bounds on tour length of TSP

tour around minimal spanning tree yields ≤ 2 ·Lopt

runtime O(n2)

Christofides algorithm yields ≤ 1.5 ·Lopt

runtime O(n2 logn)
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known solving algorithms for TSP

brute force exhaustive search O(n!)
(quite easy to implement)

Bellman-Held-Karp dynamic programming for Euclidean TSP
O(n22n) time and O(n2n) space
(not covered here, please refer to advanced algorithms in
computer science)

state-of-the-art solver Concorde.

state-of-the-art approximative solver LKH.
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known approximation heuristics for TSP

start with some small tour generated by a simple heuristic, then:

use 2-opt moves (modifing tour by changing two edges, for
instance, to eliminate crossings in Euclidean TSP);

or use 3-opt moves (modifing tour by changing three edges);

or use Lin-Kernighan heuristic algorithm
(variable mixture of 2-opt and 3-opt moves),
currently the best known heuristic strategy.
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TSP on a grid

let’s take a look at a regular m×n grid (e.g. checker board)

an optimal tour on a regular grid is easy to build
optimal length:

Lopt = n ·m if n or m even
Lopt = n ·m−1+

√
2 if n ·m odd

there are many! optimal tours
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More on traveling salesperson problem

The version of the TSP problem as shown until now is a special
case of a more general problem definition:
Let G = (V ,E) be a graph. V are the nodes (or locations), E are
the edges (or connections) with some weight (e.g., distance, time,
cost).
Goal: find a minimal tour through all nodes.
Particularly we talked about the Euclidean TSP, where the nodes
are points in the Euclidean plane and the distance among all
pairs, hence complete graph, is just the Euclidean distance.
One step to be more general is, just require the triangular
condition to be met (then, possibly, the pair-center approach
cannot be used as we have no distances for the centers), this is
called the metric TSP (mTSP).
Moreover, the distances might be asymmetric, i.e., going in one
direction is different from going in the other (ATSP).
or we have additional conditions: open loop, arrival time windows,
asymmetric distances, interrupted tours, etc.
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More recent results on the eTSP

In the 90’s it was shown that eTSP can be solved in
O(2O(

√
n logn)).

In the 10’s this was improved to O(2
√

n), and with certain
arguments that further improvement may be very unlikely.

One recent result of complexity theory is that eTSP has a
polynomial time approximation scheme (PTAS) of Oε,d(n logn)
(with fixed error ε and fixed dimension d), however, an
implementation is not available (to my knowledge).

This has been improved to Oε,d(n) with high probability (2013).
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traveling salesperson problem: first impressions

the cities distributed geographically
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traveling salesperson problem: first impressions

a best tour (trivial for this example): 0% relative error
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traveling salesperson problem: first impressions

a closest-neighbor tour (with Monte Carlo): 3.09% relative error
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traveling salesperson problem: first impressions

a pair-center tour: 14.46% relative error
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traveling salesperson problem: first impressions

a best tour (trivial for this example): 0% relative error
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traveling salesperson problem: first impressions

a quick tour (with Monte Carlo): 0.00% relative error
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traveling salesperson problem: first impressions

a genetic algorithm tour: 4.14% relative error
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traveling salesperson problem: first impressions

a best tour (trivial for this example): 0% relative error
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traveling salesperson problem: first impressions

the locations distributed in the plane
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traveling salesperson problem: first impressions

the best tour (known for this example): 0% relative error
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traveling salesperson problem: first impressions

a closest-neighbor tour (with Monte Carlo): 10.23% relative error
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traveling salesperson problem: first impressions

a pair-center tour: 13.93% relative error
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traveling salesperson problem: first impressions

the best tour (known for this example): 0% relative error
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traveling salesperson problem: first impressions

a quick tour (with Monte Carlo): 9.66% relative error
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traveling salesperson problem: first impressions

a genetic algorithm (GA) tour: 205.65% relative error
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traveling salesperson problem: first impressions

the best tour (known for this example): 0% relative error
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errors for the above heuristics

problem heuristic relative error
berlin52 closest neighbor tour 8.49

quick tour 2.32
pair-center tour 7.28
genetic algorithm tour 8.37
pair-center tour improved 0.00
Lin-Kernighan tour 0.00

rat195 closest neighbor tour 10.23
quick tour 9.66
pair-center tour 13.93
genetic algorithm tour 205.65
pair-center tour improved 1.16
Lin-Kernighan tour 0.00

block40 closest neighbor tour 3.09
quick tour 0.00
pair-center tour 14.46
genetic algorithm tour 4.14
improved pair-center tour 0.00
Lin-Kernighan tour 0.00

Your goal: make GA-tour consistently better than pair-center tour or
quick tour.
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How does the closest-neighbor algorithms work?

The classical closest-neighbor algorithm is a greedy algorithm with a
small random component:

select a random city
while there are still unconnected cities

connect to the closest unconnected neighbor
use a random tie break

connect the first with the last city

runtime is O(n2),

can be run in Monte Carlo fashion keeping the shortest tour

worst tour may have a length up to 0.5 · logn ·Lopt
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm

EC Arno Formella 76 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 77 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 78 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 79 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 80 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 81 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 82 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 83 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 84 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 85 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 86 / 389



animation of the closest-neighbor algorithm

EC Arno Formella 87 / 389
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm

EC Arno Formella 108 / 389



animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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animation of the closest-neighbor algorithm
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How does the quick tour algorithm work?

The quick tour algorithm is my own contribution (but found to be known
as insertion/addition approach) for this course. It is a probabilistic
greedy algorithm:

select three random cities to form an initial triangular tour
while there are still unconnected cities

choose a random (closest) unconnected city
expand the current tour by inserting the new city such that the tour
increment is minimal

runtime is in O(n2),

the random version can be run in Monte Carlo fashion keeping
the shortest tour

worst tour may have a length up to 2 ·Lopt

There are more similar approaches, e.g., nearest addition or farthest
addition.
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm

EC Arno Formella 163 / 389



animation of the quick tour algorithm
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animation of the quick tour algorithm
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animation of the quick tour algorithm
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How does the pair-center algorithm work?

The pair-center tour algorithm is a contribution of my own for this
course (still haven’t found it on the internet). It is a deterministic
algorithm:

with a bottom-up construction build a binary tree by replacing
the/a closest pair of points by their center

with a top-down construction build the tour by inserting the
corresponding pairs in the best possible way

The runtime is in O(n2), I guess (implemented is O(n3) and a O(n2)
version with more sophisticated data structures).
Can you prove a worst case bound for the tour length? Recently I’ve
improved to O(npolylog(n)) with practical runtime in the order of
n logn and error below 5%.
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm

EC Arno Formella 176 / 389



animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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animation of the pair-center tour algorithm
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the TSP length-line sum-up

length of tour

LCN · · · · · ·• closest-neighbor tour (can be large, 1974)

2 ·Lopt · · · · · ·• minimum spanning tree algorithm (or quick tour)

1.5 ·Lopt · · · · · ·• Christofides algorithm (best known, 1976)

Lplay · · · · · ·• playground for good heuristic algorithms

Lopt · · · · · ·• optimal tour length, Bellman-Held-Karp algorithm (1962)

LHKB · · · · · ·• Held-Karp bound ((Lopt −LHKB)/Lopt ≈ 0.01, 1971)

LMDB · · · · · ·• minimal distance bound (possible LMDB = Lopt )

0 · · · · · ·• absolute minimum
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How does the genetic algorithm work?

A genetic algorithm is a bio-inspired probabilistic algorithm:

initialize a set of individuals
while stopping criterium not met

evaluate fitness of the individuals (in search space)
generate off-springs (mutation and crossover, in the encoding
space)
generate a new generation, i.e., a subset of parents plus
off-springs (selection)

report best individual generated in the process

You’ll work with this approach in the lab hours.
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additional information

additional information and benchmark instances can be found at:

http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/ or

https:

//www.math.uwaterloo.ca/tsp/data/index.html

almost a counterexample of how to implement GA for TSP
https:

//jaketae.github.io/study/genetic-algorithm/

we use the work at
https://github.com/guofei9987/scikit-opt
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parallelization

Monte Carlo algorithms, and hence, evolutionary algorithms are
often quite easy to parallelize.

We will not talk about parallelization in this course, however, it’s
an important issue in order to achieve good performance on
modern systems.
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the sorting problem

Sorting is a basic, well known, and well studied problem.

Given a sequence of n elements belonging to an orderable set,
we have to compute a permutation of the input elements such that
they are ordered (according to the underlying compare function).

Simple example: given a sequence of integer numbers; sort
ascending.

Note that there are n! possible permutations.
(Funny, the same number as there are tours in TSP.)
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checking a solution

Before doing the actual sorting, let’s first design an algorithm that
checks the results, i.e., checks that the sequence is sorted.

Remember: we require that we can check with an algorithm that
the output/result of our initial algorithm is correct
(i.e., fulfills the corresponding properties).

Personally, I recommend that you always try to design and
implement such a checker!
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checker for the sorting problem

Check whether a pair of elements is sorted:

def PairIsSorted(v,i,j):
return v[i]<=v[j]

Check whether a sequence of elements is sorted:

def IsSorted(v):
for i in range(len(v)-1):

if not PairIsSorted(v,i,i+1):
return False

return True
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the bubble sort algorithm

A simple sorting algorithm (bubble sort):

def PairSort(v,i,j): # sorts a pair
if not PairIsSorted(v,i,j):
v[i],v[j]=v[j],v[i]

def BubbleSort(v): # LasVegas type
while not IsSorted(v):

for i in range(len(v)-1):
PairSort(v,i,i+1)

Runs in quadratic time (worst case) and linear time (best case).
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Monte Carlo sorting

Let us implement a Monte Carlo sorting algorithm:
we select a random pair of elements and interchange when necessary:

def MonteCarloSort(v,rounds):
for j in range(rounds):

i,j=RandomPair(v)
PairSort(v,i,j)

Whenever the number of rounds is sufficiently large and we are lucky,
the sequence will become sorted.
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Las Vegas sorting

Let us implement a Las Vegas sorting algorithm: we select a random
pair of elements, interchange when necessary, and stop when the
sequence is sorted:

def LasVegasSort(v):
while not IsSorted(v):
i,j=RandomPair(v)
PairSort(v,i,j)

Maybe we need to wait a very long time, but we always get a sorted
sequence. Observe: Las Vegas algorithms are easy to design, when
we have a checker!
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Las Vegas Monte Carlo sorting

Whenever we have a checker, we can implement a Las Vegas
algorithm on the base of a Monte Carlo algorithm, so for sorting we
can do:

def LasVegasMonteCarloSort(v,rounds):
while not IsSorted(v):
MonteCarloSort(v,rounds)
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Monte Carlo sort with Las Vegas condition

We can improve the Monte Carlo sort introducing a Las Vegas
condition to stop earlier:

def MonteCarloLasVegasSort(v,rounds):
while not IsSorted(v) and rounds>0:
i,j=RandomPair(v)
PairSort(v,i,j)
rounds-=1

This idea reflects the general structure of a heuristic probabilistic
algorithm: for a certain time do something maybe useful, and stop
when a certain condition is met.
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Efficient sorting

An efficient O(n logn) algorithm to sort is the merge-sort algorithm,
here written in its iterative form (divide and conquer paradigm):

def Merge(v,w,left,middle,right):
i,j=left,middle
for k in range(left,right):
if j>=right or (i<middle and PairIsSorted(v,i,j)):
w[k]=v[i]; i+=1

else:
w[k]=v[j]; j+=1

def MergeSort(w):
s,n=1,len(w)
while s<n:

v=w[:]
for left in range(0,n,2*s):
Merge(v,w,left,left+s,min(left+2*s,n))

s*=2
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sorting as an optimization problem

In order to state the integer sorting problem as an optimization
problem, we need to specify an objective function.

Let x = (x1,x2, . . . ,xn) be the current sequence of integer values.

We use f (x) = ∑
n
i=1 i · xi as objective function.

Our aim is to maximize f (x) at which point the sequence x is
sorted; to minimize we take the negative value:

def SortObjective(v):
f=0
for i in range(len(v)):

f+=v[i]*(i+1)
return -f

or

def SortObjective(v):
return -sum([v[i]*(i+1) for i in range(len(v))])
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sorting as an optimization problem

Now, we can use a genetic algorithm (e.g. the one we have for the
TSP problem) to sort our sequence (note, we want an order on the
cities, but now with our objective function for sorting and not the one
for a minimal tour length).

def GASort(w):
ga=GA_TSP(

func=fobj,n_dim=len(w),size_pop=100,
max_iter=1000,prob_mut=1

)
best_points,best_val=ga.run()
v=w.copy()
for i in range(len(best_points)):
w[i]=v[int(best_points[i])]

More in lab hours (fobj will be computed on a different data
structure).
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convergence of bubble sort

Slow improvement, finds the minimum always.
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convergence of Monte Carlo sort

Fast improvement, fixed number of steps, might not find minimum.
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convergence of Las Vegas sort

Fast improvement at the beginning, and slowly finds the minimum.
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convergence of Las Vegas with Monte Carlo sort
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convergence of Monte Carlo sort with Las Vegas condition

Fast improvement, but might not find minimum (however, stops if
found).

EC Arno Formella 289 / 389



convergence of merge sort

Deterministic very fast improvement, finds the minimum always!
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convergence of genetic algorithm sort

Well, works, but might not find the minimum.

EC Arno Formella 291 / 389



summary of convergence for sorting algorithms

Maybe the genetic algorithm is not the right choice,
better stick to the deterministic classic one.
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Can we sort faster?

You can always ask: can we sort faster?

It depends... when we have more information about the data,
maybe we can sort faster!

In the given example, we started with a random permutation of n
consecutive numbers.

So sorting them is easy: just count—starting at the minimum—up
to n, hence, a linear time algorithm!

It’s always worthwhile to analyse the underlying data!
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interpretation of the results

Don’t get betrayed by a small number of program runs that might even
suggest some good results (both in precision as well as in runtime).

You should always ask to see several/many runs, and to determine the
variance of the results, so that you can compute the Monte Carlo
standard error.
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The (0,1)-knapsack problem

The (0,1)-knapsack problem (KSP) is another classical combinatorial
optimization problem, where

Given a set of items, each with a certain weight and value, and

given a knapsack with a certain weight capacity,

find the maximum total value you can carry with the knapsack.

Note that in this problem (in comparison to TSP or sorting) we have
infeasible combinations (i.e., the subset might be too heavy).
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an example knapsack problem

If we take all available items:
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packing the knapsack with greedy weight algorithm

We take the lightest items as long as they fit:
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packing the knapsack with greedy value algorithm

We take the most valued items as long as they fit:
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packing the knapsack with greedy ratio algorithm

We take the best rated (value per weight unit) items as long as they fit:
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optimal packing the knapsack with dynamic programming

We find the optimal solution with dynamic programming:
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It seems all algorithms are great?

The previous algorithms all packed a value of 27 into the knapsack...

You noticed that I have cheated?

All algorithms found an optimal packaging!

You know why?

I was lucky.
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Evolutive methods

Evolutive methods work with populations of individuals
(or only one individual and a certain type of memory).

There are probabilistic modification processes
(mutation, reproduction, recombination/crossover) that change
the population from one to the next generation.

The performance of the individuals is based on a fitness which
usually is the objective function (but not necessarily).

There is a selection process to maintain a (more or less) stable
state (size) of the population.

Most of the algorithmic decisions are drawn probabilistically.

I will not give details on the history and researchers, please, take a
look at the literature/bibliography.

EC Arno Formella 302 / 389



Genetic algorithms (GA)

We distinguish the genotype (codification of the individuals) and
the phenotype (elements of the search space).

There must exist a bijection between genotype and phenotype.

The genotype encodes the free parameters of an individual.

The modifications (mutation and recombination/crossover) are
carried out over the genotype.

The fitness is evaluated over the phenotype (our objective
function).

We have to explain: codification (of the genotype), initialization,
mutation, recombination/crossover, selection, and stopping.
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GA: principal loop

A genetic algorithm can be summarized in the following principal loop:

InitializePopulation() # initialization
EvaluateIndividuals() # evaluation
while not Stopping(): # stopping

DetermineParents() # selection
GenerateChildren() # recombination
MutateChildren() # mutation
EvaluateIndividuals() # evaluation
ReestablishPopulation() # selection
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GA: encoding of the individuals

There are many possibilities how to encode the free parameters of an
individual to form its genotype:

use a binary bitstring, e.g., (101101)
use a sequence of integer values in certain ranges, e.g.,
(2,6,98,3) ∈ [1 : 2]× [1 : 10]× [0 : 100]× [1 : 5]
use a sequence of real values in certain ranges, e.g.,
(1.23,34.4,−2.1) ∈ [−50.0,50.0]
use a permutation
use a k-dimensional structure
use a binary tree
use a general graph
use whatever you like (remember: do something, be happy...)

Remember: we need a bijection between genotype and phenotype
and we need to implement crossovers and mutations that are able to
explore the entire search space (or at least the region of interest).
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GA: names taken from biology

The individual components of the sequences are called genes.

The possible values of a gene are called allele.

The encoding of an individual is called its genome or
chromosome.
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GA: genotype an example

green: base stations

crosses: mobile users

magenta: assignment

goal: find the minimal subset
of base stations that
guarantees an assignment
of all mobiles

Note: computation of the
objective function is quite
complex (and will not be
detailed here).
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GA: genotype an example

initial
8×8 grid

reduced to
3×3 grid

4 allele
(2-bit strings)

unusable
used
unused
fixed
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GA: mutation possiblities

gene mutation:
just change one (or more) genes to another permitted
allele

gene flip:
interchange the values of two genes

gene sequence displacement:
cut a sequence and insert at another position

gene sequence inversion:
revert the order of a (partial) sequence

what-ever-you-like:
do something, be happy...
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GA: mutation rules of thumb

The mutation rate should be inversely proportional to the size of
the genome.

For larger populations maybe reduce mutation rate in the
on-going optimization process.
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GA: crossover possiblities

simple crossover:
parents cut children
(101101) (10|1101)−→ (100111)
(010111) (01|0111)−→ (011101)

(2,8,98,3) (2,8, |98,3)−→ (2,8,40,4)
(1,9,40,4) (1,9, |40,4)−→ (1,9,98,3)

k-point crossover:
cut at k points and interchange the corresponding parts
(variation: take k at random)

uniform crossover:
interchange each gene with certain probability

multiple parent mating:
use more then two parents and interchange genes
(variation: merge entire parent set)
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GA: crossover possiblities (continued)

arithmetic crossover: assign to children convex combination of parent
genes with some random weight, α ∈ [0,1], e.g., with
α = 0.7 on second gene:
34.5 ·0.7+13.5 ·0.3 = 28.2

(1.23,34.5,−2.1)−→ (1.23,28.2,−2.1)
13.5 ·0.7+34.5 ·0.3 = 19.8

(10.5,13.5,23.1)−→ (10.5,19.8,23.1)
(again variations: as k -point, or with all genes, or with k
at random)

blended crossover: blend two corresponding parent genes with a
certain, usually fixed, value α ∈ [−0.5,∞] according to
the current gene spread

simulated binary crossover: blend two corresponding parent genes
according to a suitable probability density function

what-ever-you like: remember, do something, be happy...
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GA: crossover example (2-point cyclic crossover)

select two
grid points

interchange
rectangles
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GA: principal loop

A genetic algorithm can be summarized in the following principal loop:

InitializePopulation() # initialization
EvaluateIndividuals() # evaluation DONE
while not Stopping(): # stopping

DetermineParents() # selection
GenerateChildren() # recombination DONE
MutateChildren() # mutation DONE
EvaluateIndividuals() # evaluation DONE
ReestablishPopulation() # selection
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GA: selection

In the principal loop, there are two selection processes:
How to select the parents to generate the off-springs? and
How to rearrange the final population or next generation?

We use the following notation:
µ stands for the number of individuals in the population
λ stands for the number of children being generated

We distinguish two main strategies:
(µ +λ )-strategy

from the µ individuals of the current generation select the parents
and generate λ children
from the µ +λ individuals choose the µ best ones as new
generation

(µ,λ )-strategy
from the µ individuals of the current generation select the parents
and generate λ ≥ µ children
from the λ children choose the µ best ones as new generation

The second question from above is answered.
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GA: selection options

To select the parents being allowed to have off-springs,
there exists a bunch of suggestions:

roulette wheel: assign to each individual a fraction of the wheel
according to its relative fitness and spin the wheel
(variation: smooth, weight, or normalize the fitness
somehow, e.g., use log of objective function, or use
z-score)

rank based: order the individuals according to fitness and select with
a probability weighted by the rank
(variation: compute selection probability with linear
function of rank, so the least ranked still gets certain
probability to get selected)

EC Arno Formella 316 / 389



GA: selection options (continued)

tournament based: draw a certain number of random individuals,
select the best one as parent
(variation: select directly the best two as parents)

truncation selection: only the individuals with highest fitness values
will be parents

what-ever-you like: remember, do something, be happy...

The first question (from two slides earlier) is answered.
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GA: initialization

generate the initial population with random genomes
take into account that a distribution in genotype not necessarily is
similar to the same distribution in phenotype
there are maybe many individuals with very low fitness
the initial convergence rate might be slow

generate the initial population with individuals from another
heuristic algorithm or various such algorithms

the population might be biased into a certain region of the search
space
the diversity of the population might be low
the convergence rate might be trapped early in a local optimum

recommendation: use a mixture of both
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GA: termination criteria

There are many possibilities when to stop the iteration of a genetic
algorithm:

once the first solution has been found

once a sufficiently good solution has been found

once the optimum has been found

once a certain number of iterations has been executed

once the diversity of the population is below a certain threshold

once the convergence rate of the improvement is below a certain
threshold

once a certain amount of runtime has been spent

recommendation: use an or-mixture of all
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GA: results for the example (2007)

119 of 149 nodes used 24 of 149 nodes used
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GA: use for antenna design (small satellites)

Horny, AlGlobus, Linden, Lohn: Automated Antenna Design with Evolutionary Algorithms
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GA: diversity

The diversity measures, in some sense, the non-similarity
between the individuals of a population.
E.g., Hamming-distance over the bitstring (using exor):
010010⊗101000 = 111010 −→ 4
e.g., delta-distance over the integer (or real) sequence:
∑i |xi − x ′

i | (being x and x ′ two individuals)
There are much more similarity measures.
similar individuals in a population reduce the diversity and the
genetic algorithm maybe gets stuck in some region of the search
space (maybe, but not necessarily, a local minimum).
To augment the diversity, we have only the mutation operation,
provided the mutation becomes visible in the next generation.
(Observe: whenever an allele disappears in a population, most of
the crossover operations cannot regenerate it!)
Another possibility is just to regenerate a completely or partially
new population.
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GA: elitism

We have to draw the decision whether the best individual(s) is (are)
forced to belong unmodified to the next generation.

Elitism might help to converge faster.

Elitism might reduce diversity faster.

The consequences of this trade-off are problem dependent.
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GA: final remarks

The difficulties of understanding and analizing genetic algorithms
lie in the fact that they implement a combination of random
search (by mutation) and biased search (by recombination).

Genetic algorithms need unique and problem-specific mutation
and recombination operators, which makes it more challenging to
implement a generic version that can be easily applied to different
optimization problems.

Nature still has its somewhat better approach: DNA, RNA, gene
expression, proteins, and mitochondria (mtDNA)...
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evolutionary programming (EP)

Once we have seen genetic algorithms, evolutionary programming is
somewhat simpler: it just uses mutation.

there exist only the phenotypes, let’s say xi (for i = 1, . . . ,n),
i.e., n individuals in the population

modification (mutation) is realized over the phenotypes as:

x ′
i = xi + ri

√
β f (xi)+ γ

being β > 0 and γ ≥ 0 tuning parameters (for instance β = 1 and
γ = 0) and ri is a random value taken from a normal distribution
with mean 0 and variance 1 (i.e., ri ∈ N[0,1]n).

Note that the fitness (objective function f ) must be shifted, so the
minimum is positive.

Usually a (µ +µ)-selection strategy is used: all individuals are
mutated and the best µ individuals are kept.
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EP: principal loop

A evolutionary programming algorithm can be summarized in the
following principal loop:

InitializePopulation()
EvaluateIndividuals()
while not Stopping():

GenerateChildrenByMutation()
EvaluateIndividuals()
ReestablishPopulation()
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differential evolution (DE)

Once we have seen genetic algorithms, differential evolution is
somewhat simpler: it just uses a special type of recombination.

there exist only the phenotypes, let’s say xi (for i = 1, . . . ,n), i.e.,
n individuals in the population

For each individual we select three other individuals, say xj ,xk ,xl ,
to compute a mutant vector vi

vi = xj +F · (xk − xl)

being F ∈ [0.4,0.9] (usually) a tuning parameter.

Then we generate an off-spring with a uniform crossover between
individual xi and mutant vi using a certain threshold c

Usually a (µ +µ)-like selection strategy is used: all individuals
are used to generate off-springs, and the best are kept.
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DE: principal loop

A differential evolution algorithm can be summarized in the following
principal loop:

InitializePopulation()
EvaluateIndividuals()
while not Stopping():

GenerateChildrenByDiffusion()
EvaluateIndividuals()
ReestablishPopulation()
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DE: some variations

One might consider to use always the best individual found so far
as individual xj .

The tuning parameter F might vary, i.e., taking the value from a
uniform or a normal distribution.

One might use DE on discrete sets as well by just rounding the
mutants appropriately (or search in the close integer
neighborhood according to the dimension of the underlying
problem).

(My opinion) Differential evolution is not just a genetic algorithm,
as there is no genotype, rather the other way round: a genetic
algorithm using the phenotype as genotype, no mutation, and a
random recombination, becomes a differential evolution
algorithm.
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genetic programming (GP)

Once we have seen genetic algorithms, genetic programming is a
genetic algorithm with some special phenotypes and genotypes.

the genotype is a (simple) program described as a syntax tree
that can be written as well with Polish notation (prefix notation),
see next slide...

the parenthesis can be eliminated, interpretation of the
corresponding expression is easy to perform with a stack
automaton.

some properties of the execution of the resulting program (as
phenotype) are used as fitness (see example, later)
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GP: syntax tree

syntax tree and Polish notation

(2.2-(x/11))+(7*cos(y))

(+ (- (2.2 (/ X 11))) (* (7 cos(Y))))

+ - 2.2 / X 11 * 7 cos Y

image taken from wikipedia
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GP: mutation and crossover operations

the programs are modified with adecuate mutation and crossover
operations
mutation:

change a node, but take care to keep a valid syntax tree (maybe
subtrees must be removed or added)
rotate nodes
interchange nodes

crossover: interchange a subtree of one parent with a subtree of
the other parent
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GP: example

Program a robot (ant) that starts at some cell (usually a corner) and
tries to find as many objects (food) with as few steps as possible.

Santa Fe Trail

nodes: turn-left, turn-right, move, if-food-ahead
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particle swarm optimization (PSO)

The inspiration comes from social behavior of individuals within
an environment including other individuals.

We work with n individuals that move in a continuous
d-dimensional search space.

The individuals move (in steps) through the search space and
adjust their velocities according to information gathered from
others (and their own histories).

The individuals are grouped into neighborhoods.
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PSO: velocity actualization

xi vector of current positions

vi vector of current directional velocities

bi best local position vector

hi best neighbor position vector

ϕ1 = 2.05,ϕ2 = 2.05 influence values (just some magic)

ξ ∈ [0.4,1], e.g. ξ = 0.729 inertia reduction value

velocity actualization

vi = ξ vi +U[0,ϕ1]◦ (bi − xi)+U[0,ϕ2]◦ (hi − xi)

xi = xi + vi

The ◦ operator is either a Hadamard-operation (i.e.,
component-wise), or a linear operation (i.e., scalar multiplication)
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PSO: principal loop

A particle swarm optimization can be summarized in the following
principal loop:

InitializePopulation() # i.e. x_i, v_i
EvaluateIndividuals() # i.e. b_i
DefineNeighborhoodSize()
while not Stopping():

DetermineNeighborhoodValues() # h_i
UpdateIndividuals() # i.e., x_i, v_i, b_i
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PSO: some more details

The velocity can be confined not to pass a certain maximum
velocity, which helps to avoid explosion, i.e., that the area of the
search space being explored becomes exponentially larger.

Initial velocities can be zero or some random values.

Small neighborhoods tend to provide a better global search, while
large neighborhoods tend to produce a faster convergence (but
maybe premature).

Neighborhoods can be defined as nearest neighbors, as fixed and
overlapping, or entail the entire population, or what-ever-you-like.

The inertia reduction can be increased with the simulation time.

The best global individual g can be included in the equation: add
+U[0,ϕ3]◦ (g− xi)

The worst (local and global) positions can be avoided: add
−U[0,ϕ4]◦ (bi − xi) and/or −U[0,ϕ5]◦ (hi − xi) and/or
−U[0,ϕ6]◦ (g− xi)
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PSO: different versions

binary version: the variables are interpreted as binary values
according to a distribution or threshold

discret version: the variables are interpreted as integer values
(for instance with simple rounding)

dynamic version: the search space is reinitialized and/or the local
variables are reset (type of outer Monte Carlo loop)
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PSO: convergence

the individuals should exhibit certain diversity
(recall the similarity measures)

diversity can be forced dynamically by adapting the parameters
alongside the simulation time

or one might use the lack of diversity as a stopping condition
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ant colony optimization (ACO)

The idea stems from stigmergy: exercise indirect communication and
coordination through the environment
(leave a trace and act on findings).

The inspiration stems from ants, bees, termites, wasps, etc.

The individuals of a population leave information (pheromones) in
the search space.

The decisions are based on individual information or behavior
and on the pheromones encountered.

The information (pheromones) is volatile and can evaporate.

The pheromones or a statistical evaluation of the individuals
define the solution.

Initially invented to deal with combinatorial problems (like TSP).
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ACO: principal loop

An ant colony optimization can be summarized in the following
principal loop:

InitializePheromoneValues()
while not Stopping():

for individuals in range(n):
ConstructSolution(individual)
UpdatePhermoneValues()
UpdateIndividuals()
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ACO: how TSP can be approached

The ant colony optimization takes place on the graph of the
underlying problem (e.g., the complete graph among all cities).
The ants are placed at the cities.
The initial pheromones are placed on the edges
(either constant value or inversely proportional to the distance).
The ants (in an appropriate iteration) run along a path in the
graph (excluding already visited cities) and draw at each city a
decision in which direction to continue.
The decision is based on: pheromones on each possible edge,
maybe on some own information stored at the individual, and on
a random value.
Once the tour is completed for all ants, all of them deposit their
pheromone on their tracks.
The general evaporation process is applied to all/changed edges.
The currently best tour is memorized.
The iteration is repeated until a certain stopping condition is met.
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ACO: when to use?

ACO approaches are especially possible when the underlying problem
allows for a constructive solution (as seen with the nearest-neighbor
heuristic for the TSP).

Simon gives the example that an ACO approach found a tour with 3%
deficit on the Berlin52 problem.
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The no-free-lunch theorem

The no-free-lunch theorem states that the performance of all
optimization (search) algorithms, amortized over the set of all possible
functions, is equivalent. The implications of this theorem are far
reaching, since it implies that no general algorithm can be designed so
that it will be superior to a linear enumeration of the search space
(exhaustive search).
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What are practical implications of the no-free-lunch
theorem?

Each problem (or each type/class of problem) might need its own
and proper optimization method.

Maybe for interesting problems we find good optimization
algorithms (we are not interested in all problems).

Benchmarking optimization algorithms is a challenge, as general
benchmarks might just provide average data, but our algorithm
might be special for a niche of problems.

There is a need to categorize problems and algorithms to obtain
some insight on which type of problem a certain type of algorithm
performs well.
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How to compare different approaches?

In order to compare different algorithms one might take into account:

wall clock runtime on comparable systems

(average) number of objective functions evaluations
(but the rest of the inverted time must not be neglected)
difficult to be used when comparing constructing algorithms

the result as distance to optimium or to some known lower bound

mean best fitness

properties of the solution histogram (fitness of all solutions found)

scaling properties with problem size (applied to any measure
above)
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Practical aspects to be considered

One has to decide what is really needed:

need a good (or best) solution independent of runtime
(e.g. controler for space telescope or the evolved antenna)

need a moderate solution fast
(e.g., daily TSP with time windows, where finding a feasible
solution is already NP-hard)
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Local search methods

local search methods explore the search space by inspecting
(close or far) neighbor solutions
they stop at a local minimum, i.e., all neighbors are greater
(remind: we searching for a minimum)
a classical example is the simplex method for linear programming

or the Newton method (or Newton-Raphson method) applied to
optimization (here formulated as maximization)
while GradientFobj(xi) > tolerance:
xi=xi-GradientFobj(xi)/SecondDerivativeFobj(xi)

(Take care: should check if eventually really maximum, and not
minimum.)
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Local search methods

Further classic iterative optimization methods for the minimization of
real-valued functions that need gradient information, are:

Gauss-Newton method (variation of the Newton-method by using
the Jacobean-matrix instead of the Hessian-matrix)
second derivatives are not required here

gradient descent (or steepest decent)

Levenberg-Marquardt methods (interpolation between
Gauss-Newton methods and gradiant descent)
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Local search methods

Further classic iterative optimization methods for minimization of
real-valued functions that don’t need gradient information, are:

Nelder-Mead method (heuristic), converges to a stationary point
(minimum, maximum, or saddle, i.e., gradient is zero)

idea: shrink, reflect, and expand a simplex (triangle in 2D), by
evaluating the objective function on corners and faces (edges in
2D)

García-Palomares method, converges to a local minimum

idea: explore the neighorhood according a random local spanning
coordinate system and proceed at a point that has been found
with a sufficiently steep descent (otherwise iterate with smaller
tolerance)
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Local search for traveling salesperson problem

Idea: define a local operation that changes a given tour into another
tour:

2-opt move:

3-opt move:

k -opt move

Lin-Kernighan-heuristics (LKH) is a combination of 2-opt, 3-opt,
and rare k -opt moves (recall, still state-of-the-art to solve TSP)
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Use of local search

Observe: local search methods can be used in any other optimization
algorithm in order to (try to) converge to a local minimum. That is
exactly what LKH (Lin-Kernighan-Helsgaun, the very good
implementation) does. However:

Can all tours be reached with 2-opt moves? (when starting with a
certain initial tour) ...still an open question

There are worst case scenarios where the 2-opt heuristics has
exponential runtime until convergence.

What about 3-opt, or k -opt, moves? ...still an open question
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Reactive Tabu Search

start with a feasible solution (e.g., with some heuristics)

search for possibilities to improve the current solution (e.g.,
search in the neighborhood)

if we can improve: choose one, the best or a random one.
if we cannot improve (i.e., trapped at a minimum):

search for possibilities to worsen the current solution
if we can escape: try again improvements
if we cannot escape: jump to another feasible solution
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The Tabu criterion

avoid repetitive movements taking advantage of a memory that
stores forbidden intermediate solutions
(or forbidden specific features of the current neighborhood
search)

i.e., mark certain movements as tabu for a certain number of
iterations, i.e.,the memory is volatile!

reactive means that the tabu period is dynamically adapted,
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psm: point set match for proteins

A template and graph based method with local search and use of
domain knowledge for approximate match.

searching a 3D-structure (34 atoms) in a protein (50000 atoms)
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psm: point set match for proteins

psm finds, for instance, six locations:
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things to take into account

the search space and/or the objective function can be:

discrete continous
total partial

simple complex
explicite implicite

modelado experimental
linear non-linear

convex non-convex
differentiable non–differentiable

single-objective multi-objective
constrained unconstrained

static dynamic

We have seen already a lot of examples of all kind.
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multi-objective optimization

Given a search space X (called as well search domain or
problem space) and

a set of k functions fi (bounded from below) from the search
space to the real numbers (or at least a totally ordered set), e.g.
fi : X−→ R,

find an element x⋆ ∈ X such that fi(x⋆)≤ fi(x) for all x ∈ X
and all k functions fi .

Maybe there is no point in X that minimizes all the k functions
simultaneously, then we look for Pareto-optimal solutions, i.e.,
solutions that cannot be improved without worsening at least one
of the other objective functions.
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Pareto front

Remind we have more than one independent objective function

Pareto optimal (global): every other component for all other
solutions is worse (or equal)
(other names are: efficient points, dominant points, non-interior
points)

Pareto optimal (local): every other component for all other
solutions in a local neighborhood is worse (or equal)

Hence, the Pareto frontier describes the trade-off between the
different objectives.
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Dominant points and regions

f

f1

2

uncomparable

dominated region

non
uncomparable

dominated region
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Pareto front

Example of a Pareto front with two marked non-dominated points:

f

f1

2

Pareto front

dominent points

         or   non−dominated points
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Pareto front

Example of a Pareto front for two objectives (on measured data):
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Multi–objective optimization

How can we find a good solution to the optimization problem with more
than one objective function?

convex combination of the objectives

homotopic techniques, i.e., compute the entire Pareto frontier,
for instance with a population based algorithm, and select later...
(to obtain the Pareto frontier one might explore the coefficient
space of the convex combination)

goal programming, i.e., fixed values for all objectives and
minimize the distance of all objectives to the predefined goals
(according to some convenient distance metric)
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Multi–objective optimization

priority optimization, i.e., fix thresholds for all but one objective
function beforehand and optimize above the threshold according
to the most important one

priorization (multi-level) programming, i.e., optimize according to
a predefined ordering of the objective functions.

fixed trade-off, i.e., find the point in the Pareto front that is tangent
to a certain hyperplane (especially usefull when Pareto front is
convex and low dimensional).
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Optimization with restrictions (or constraints)

In many application there are restrictions (or constraints) that limit the
optimization process:

find an element x⋆ ∈ X such that fi(x⋆)≤ fi(x) for all x ∈ X
and all k functions fi and

a certain number L of inequality constraints
gj(x)≥ 0 (for all j ∈ [1 : L]) are fulfilled, and

a certain number E of equality constraints
hn(x) = 0 (for all n ∈ [1 : N]) are fulfilled.

Simple constraints are for instance so-called box-constraints, i.e., the
search space is confined in each dimension by an interval.

Such box constraints are often handled separately in the optimization
packages.
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Optimization with restrictions (or constraints)

The inequality and equality constraints again might be linear or
non-linear functions.

Due to the restrictions there might arise points (elements of the
search space) during the optimization process which are
unfeasible, i.e., no valid objective function values can be
computed (or even the objective function cannot be computed at
all).

Sometimes even trying to find some feasible solution is already a
very complex task (for instance: for TSP with time windows the
problem is already NP-hard).
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Optimization with restrictions (or constraints)

To tackle constraints there are two main classical approaches:

use of penalties, i.e., assign a sufficiently large values to the
objective function(s)

use of interior methods, i.e., make sure not to leave the feasible
region
(main idea: use the fulfillment of the constraints as additional
objective function building a so-called barrier function with an
additional parameter µ that is continuously shrinked to reach
zero.)
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Multi–objective optimization with evolutionary methods

Evolutionary methods can approximate the Pareto frontier in
parallel (with the help of the diversity among the individuals).

For instance particle swarm systems varying the weights of a
convex combination periodically during the iterations.

For instance a genetic algorithm can hold a population that tries
to converge (in some sense uniformly) towards the Pareto front.
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multi-objective evolutionary algorithms (MOEA)

VEGA, vector evaluated genetic algorithm
Idea: in the selection process parts of the mating parents are
selected according to each objective function

MSGA, multi-sexual genetic algorithm
Idea: individuals are marked as belonging to a certain objective
function, ranking is used to select parents, only differently marked
individuals are used to generate children

NSGA, non-dominant sorting genetic algorithm
Idea: sort individuals according to their dominance, and design
the selection according the dominance classes (i.e., work with
several frontiers, intending to converge eventually to the Pareto
front.
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multi-objective evolutionary algorithms (MOEA)

NSGA-II, including elitism, dominant individuals are preserved in
population, clustering is avoided

SPEA, strength Pareto Evolutionary algorithm
Idea: maintain a fixed set of best individuals while guaranteeing
that they are spread over the Pareto front without to much
clustering
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Simulated Annealing

The name and idea stems from the slow and repeated heating and
cooling process of certain materials (usually alloys of different metals
with addings, e.g., iron+carbon) until certain properties are achieved.

https://en.wikipedia.org/wiki/Simulated_annealing
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Simulated Annealing

Explores a neighbor in the search space, whenever there is an
improvement in the objective function at the neighbor or it is not
worse than a temperature dependent threshold with some
probability.

Let ∆f be the difference between current solution f and neighbor
solution fn.

Let T be a temperature.

Then the neighbor is accepted whenever either ∆f < 0
(we are going downhill)
or if e−∆f/T > r , for r being a random value in [0 : 1]
(we are going uphill).

With increasing iteration rounds, i.e., during a certain number of
iterations the temperature is held constant, the temperature is
reduced, hence, the threshold converges towards zero.
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Simulated Annealing cooling schemes

linear cooling: T = T0 −ηk
with T0 an initial temperature, k the iteration number and η some
free parameter, being constant during optimization.
(To avoid negative temperature: T =max(T0 −ηk ,Tmin))
exponential cooling: T = aT
with a ∈ [0.8,1) typically; slower cooling the a close to 1.
inverse cooling: T = T/(1+βT )
with β being a small constant (e.g. β = 0.001).
logarithmic cooling: T = T0/ logk
with c a suitable constant.
(Used as well a generalization: T = T0/ log(k +d)).
Not really practical in applications but was used to prove
convergence to global minimum under certain conditions.
inverse linear cooling: T = T0/k .
Not really practical in applications but was used to prove
convergence to global minimum under certain conditions.
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Simulated Annealing cooling schemes

It seems that any monotonely decreasing function, that is neither
too steep at the beginning and neither to slow decreasing in the
end, might serve.

Cooling can be implemented differently in each dimension in
multi-dimensional problems.

The entire process can be restarted from another location in
search space (Monte Carlo approach around inner simulated
annealing process).

EC Arno Formella 374 / 389



Simulated Annealing vs. Tabu Search

Both methods belong to the random path methods:
there is only one individual
the moves in the search space explore the neighborhood in a
random manner
a move is accepted whenever

TS: a random, but not tabu, move among the improving once in first
place and non-improving onces in second place.
SA: a random move that fulfills the annealing condition

Tabu search is, as improvements are prefered, a local search
method that finds local minima;
which might not be the case for simulated annealing (you need to
add some final local search approach).
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memetic algorithms

The population based algorithms usually do not perform local
optimization of the individuals. Including such an approach is called a
memetic algorithm:

use an adequate local search strategy (e.g. steepest decent,
iterated local search etc.) to improve the fitness of the individuals
this improvement of an individual is also called individual learning
the result of the local optimization:

might change the genotype of the individual
(Lamarckian learning), i.e.,
the changed individual participates in the genetic algorithm, or
might not change the genotype of the individual
(Baldwinian learning), i.e.,
the population is not changed

the local search can be restricted to a certain part of the
population, for instance, the best ranked ones
the local search can be restricted to be performed only after a
certain amount of iterations in the overall genetic algorithm
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biogeography-based optimization

The biogeography-based optimization uses the idea of
populations evolving at islands that once in a while exchange
individuals via migration.

Implemented as further meta-heuristic in the framework of
genetic algorithms (especially for separable objective function,
where optimization of their convex combination is an option).

Can be applied to particle swarm optimization as well (I haved
found implementation examples, e.g. from 2017).
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much more nature-inspired work done

Without going into details, there is a huge bunch of other
nature-inpired optimization heuristics (see introduction as well):

ant lion optimization
artificial bee colonies
bat algorithm
dragonfly algorithm
firefly optimization
grasshopper optimization
grey wolf optimizer
whale optimization
invasive weed optimization
...
cristalization of materials
great deluge algorithm
gravitational search algorithm
etc. etc. etc.
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issues to be considered

The following issues should be considered when implementing and
using a certain optimization approach for a given problem:

implementation difficulty

number of parameters to be adjusted

population size

number of objective function evaluation

convergence velocity (convergence profile)

handling of local optima (stucking)

handling of restrictions

statistically correct evaluation on benchmark problems and
MonteCarlo runs
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efficiency issues to be considered

The following efficiency aspect might be useful in a certain
implementation of an optimization approach on a given platform:

use of parallelization

use of caching

use of efficient data structures

use of adequate precision in calculation

use of approximation algorithms (especially in early phases for
the objective function computation)

use good random number generators
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hyper-parameter tuning

Many of the different heuristics seen so far have a certain number of
free parameters that must be fixed when starting the optimization, but

we might use another optimization algorithm that tries to find a
good parameter set for the original algorithm

for instance, we run the algorithm on a suitable benchmark suite
to obtain good free parameters, and then run the optimization with
these settings on the real problems we are interested to solve

this process can be iterated, i.e., each use of the optimizer might
adapt to a certain degree its free parameters

eventually we arrive at an online-algorithm which adapts its
parameters with each problem it is faced to
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extension: an optimization problem

Given for a undirected graph certain properties:

number of nodes

number of edges

distribution of node degrees

assortativity of the interconnexions

a =
∑(i,j)(di −d i) · (dj −d j)√

∑i(di −d i)2 ·
√

∑j(dj −d j)2
(1)

distribution of length of edges
(according some coordinates of the nodes in the plane)

must be connected

Find a (large) random graph that fulfills (more or less) all properties.
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example

number of nodes: 1.000.000

number of edges: 149.000.000

distribution of node degrees: facebook distribution

assortativity of the interconnexions: −0.189 (facebook)

distribution of length of edges: population in Germany

must be connected
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current state-of-solution

Input:

fix number of nodes

fix degree distribution

scale degree distribution, hence, get number of edges

fix target assortativity

fix target length distribution

must be connected
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current state-of-solution

Algorithm:

randomized Havel-Hakimi-Horvat-algorithm generates graph with
exact degree distribution

alternating annealing algorithm using some type of 2-opt
operation on graph

connectivity tested and corrected once in a while

EC Arno Formella 385 / 389



result

length distribution
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result

The previous slide shows:

magenta: the initial length distribution
(after having run the randomized HHH-algorithm),

green: the target length distribution,

blue: the generated length distribution
(after having run the alternating annealing algorithm)

where the assortativity is below 0.1% of the target assortativity.

Hence, we found a connected graph with 1.000.000 nodes and
149.000.000 edges that has exactly the given degree distribution and
very close assortativity and length distribution regarding the given
target values.
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runtime of graph generating tool

runtime versus number of nodes in [ms]
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last but not least

that’s it, folks ... thanks. questions?
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