
CD

Concurrent and distributed programming
(Exercises)

2009/2010

Dr. Arno Formella

Departamento de Informática
Universidad de Vigo

09/10



CD

Programming exercises

Comments

The programming exercises seem to be easy when you read
their description, however, you will notice, they are not that easy
once you try to solve them.



CD

Programming exercises

Starting I

1 Write the “hello world” program in Java.
2 Write a “hello world, thread ... speaking” program using a

set of threads (consider taking a close look to the manual
pages of Thread and Runnable and use both
possibilities.)

3 Measure how many threads you can start and keep alive.



CD

Programming exercises

Starting II

4 Measure how much time a single thread needs to execute
a certain task, e.g., writing 100000 times “hello world”, and
how much time a set of, let’s say, 1000 threads needs to
perform the same task distributing the work among them.
Generate a diagram plotting the execution time over the
number of running threads.

5 Change the work to be done by something that does not
use output operations, and generate the same plot as
above.

6 Make sure that your programs terminate smoothly, i.e., all
participating threads reach their final “}”.



CD

Programming exercises

Starting III

Describe precisely your observations (dependencies of the
results on the operating system, system load, work load, kernel
number, etc.).



CD

Programming exercises

PingPONG I

1 Implement a perfect pingPONG. Consider the following
details:

Experiment with the different trials presented in the class
notes. (Observe and take notes of their properties.)
Develop a solution with the following properties:

1 Use three threads (one thread for the main program, that is
the referee, and one thread for each player).

2 The referee starts the game (with a previous message to the
screen).

3 The players write their pings and PONGs, respectively.
4 The referee stops the game after a certain amount of time

has elapsed (again writing previously a message to the
screen).



CD

Programming exercises

PingPONG II

5 The players exchange the ball at most one more time.
6 Both players/threads stop (writing a corresponding

message).
7 The referee writes the last message.
8 The program terminates.

Observe the difference using notify() or notifyAll()
in the synchronization protocol, especially concerning the
number of useless wake–ups of threads.



CD

Programming exercises

PingPONG III

2 Extend your program to work with as many players as
given in the command line (the maximum number you
know from the previous exercise). Generate a table with
the execution times for different numbers of players but
constant number of ball exchanges (including the trivial
case of one player writing only pings).

3 What would be a perfect solution? i.e., an implementation
where just the next player who is to play is woken up.

4 Implement the game pingPONG between two computers.
Assume the IP addresses known beforehand.



CD

Programming exercises

PingPONG IV

Duplicate the output on all participating computers, each
one using a different prefix, e.g., referee:, player
red:, and player blue.



CD

Programming exercises

Process planning with priorities I

Implement an application with three types of processes/threads
exhibiting three different priorities (let’s say A, B, and C) while
trying to access one resource.

1 How do you implement the control of the scheduler such
that all processes have access to the resource as
described in the ongoing: within the same priority group,
the access to the resource follows the ordering in time, and
among the different priorities the accesses should be
distributed such that within the last k accesses granted at
least a % are for class A, b % are for class B and the
remaining c % are for the class C? (k , a, b, and c are



CD

Programming exercises

Process planning with priorities II

configuration variables of the scheduler, clearly, the
percentages count only if there are processes of a certain
class available, their sum cannot exceed 100 %). (Hint: a
scheduler is able to count.)

2 Argue that your solution guarantees finite waiting times for
all processes that try to get access to the resource.



CD

Programming exercises

Concurrent data structures I

1 Preparation:
Study closely the package java.util.concurrent.
Study the implementation of a concurrent list
http://trevinca.ei.uvigo.es/~formella/doc/
cd06/ConcurrentList.tgz.

2 Use the concurrent list to implement a hashtable (or
hashmap) in the following way:

There is an array of fixed size which is indexed by the keys
of the objects. Each field of the array holds a concurrent list
that stores the objects with the corresponding key.

http://trevinca.ei.uvigo.es/~formella/doc/cd06/ConcurrentList.tgz
http://trevinca.ei.uvigo.es/~formella/doc/cd06/ConcurrentList.tgz


CD

Programming exercises

Concurrent data structures II

Implement at least the following operations: insert
(inserts a new object into the table), lookup (returns true if
the object is found in the table, otherwise false), and
delete (deletes an object, if found in the table).

3 Implement a use case of the hashtable sufficiently large so
you can realize measurements of execution time.

4 Compare your implementation with a direct usage of the
ConcurrentHashMap of Java according to execution
time, memory consumption, and what you find interesting.


	Programming exercises

