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Comments

The programming exercises seem to be easy when you read
their description, however, you will notice, they are not that easy
once you try to solve them.
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Starting I

1 Write the “hello world” program in Java.
2 Write a “hello world, thread ... speaking” program using a

set of threads (consider taking a close look to the manual
pages of Thread and Runnable and use both
possibilities.)

3 Measure how many threads you can start and keep alive.
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Starting II

4 Measure how much time a single thread needs to execute
a certain task, e.g., writing 100000 times “hello world”, and
how much time a set of, let’s say, 1000 threads needs to
perform the same task distributing the work among them.
Generate a diagram plotting the execution time over the
number of running threads.

5 Change the work to be done by something that does not
use output operations, and generate the same plot as
above.

6 Make sure that your programs terminate smoothly, i.e., all
participating threads reach their final “}”.
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Starting III

Describe precisely your observations (dependencies of the
results on the operating system, system load, work load, kernel
number, etc.).
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PingPONG I

1 Implement a perfect pingPONG. Consider the following
details:

Experiment with the different trials presented in the class
notes. (Observe and take notes of their properties.)
Develop a solution with the following properties:

1 Use three threads (one thread for the main program, that is
the referee, and one thread for each player).

2 The referee starts the game (with a previous message to the
screen).

3 The players write their pings and PONGs, respectively.
4 The referee stops the game after a certain amount of time

has elapsed (again writing previously a message to the
screen).
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PingPONG II

5 The players exchange the ball at most one more time.
6 Both players/threads stop (writing a corresponding

message).
7 The referee writes the last message.
8 The program terminates.

Observe the difference using notify() or notifyAll()
in the synchronization protocol, especially concerning the
number of useless wake–ups of threads.
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PingPONG III

2 Extend your program to work with as many players as
given in the command line (the maximum number you
know from the previous exercise). Generate a table with
the execution times for different numbers of players but
constant number of ball exchanges (including the trivial
case of one player writing only pings).

3 What would be a perfect solution? i.e., an implementation
where just the next player who is to play is woken up.

4 Implement the game pingPONG between two computers.
Assume the IP addresses known beforehand.



CD

Programming exercises

PingPONG IV

Duplicate the output on all participating computers, each
one using a different prefix, e.g., referee:, player
red:, and player blue.
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Process planning with priorities I

Implement an application with three types of processes/threads
exhibiting three different priorities (let’s say A, B, and C) while
trying to access one resource.

1 How do you implement the control of the scheduler such
that all processes have access to the resource as
described in the ongoing: within the same priority group,
the access to the resource follows the ordering in time, and
among the different priorities the accesses should be
distributed such that within the last k accesses granted at
least a % are for class A, b % are for class B and the
remaining c % are for the class C? (k , a, b, and c are



CD

Programming exercises

Process planning with priorities II

configuration variables of the scheduler, clearly, the
percentages count only if there are processes of a certain
class available, their sum cannot exceed 100 %). (Hint: a
scheduler is able to count.)

2 Argue that your solution guarantees finite waiting times for
all processes that try to get access to the resource.
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Concurrent data structures I

1 Preparation:
Study closely the package java.util.concurrent.
Study the implementation of a concurrent list
http://trevinca.ei.uvigo.es/~formella/doc/
cd06/ConcurrentList.tgz.

2 Use the concurrent list to implement a hashtable (or
hashmap) in the following way:

There is an array of fixed size which is indexed by the keys
of the objects. Each field of the array holds a concurrent list
that stores the objects with the corresponding key.

http://trevinca.ei.uvigo.es/~formella/doc/cd06/ConcurrentList.tgz
http://trevinca.ei.uvigo.es/~formella/doc/cd06/ConcurrentList.tgz
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Concurrent data structures II

Implement at least the following operations: insert
(inserts a new object into the table), lookup (returns true if
the object is found in the table, otherwise false), and
delete (deletes an object, if found in the table).

3 Implement a use case of the hashtable sufficiently large so
you can realize measurements of execution time.

4 Compare your implementation with a direct usage of the
ConcurrentHashMap of Java according to execution
time, memory consumption, and what you find interesting.
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